Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 11(8): 8009-8017, 2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30702859

ABSTRACT

The recognition of the solid electrolyte interface (SEI) between the electrode materials and electrolyte is limiting the selection of electrode materials, electrolytes, and further the electrochemical performance of batteries. Herein, we report ZnSe@C core-shell nanocomposites derived from ZIF-8 as anode materials of lithium-ion batteries, the electrochemical performances, and SEI films formed on ZnSe@C in both ether and carbonate electrolytes. It is found that ZnSe@C delivers a reversible capacity of 617.1 mA h·g-1 after 800 cycles at 1 A·g-1 in the ether electrolyte, much higher than that in the carbonate electrolyte. Both ex situ X-ray diffraction and X-ray photoelectron spectroscopies reveal that stable SEI films are formed on ZnSe@C in the ether electrolyte while selenium is involved in the formation of SEI films and further dissolved into the carbonate electrolyte because of the concurrent decomposition of electrolytes and insertion of Li+ into ZnSe, which differentiates between the cycling performances of ZnSe@C composites in ether and carbonate electrolytes.

SELECTION OF CITATIONS
SEARCH DETAIL
...