Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 52(18): 10680-10688, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30106284

ABSTRACT

For the first time, we demonstrated vanadate (V(V)) reduction in a membrane biofilm reactor (MBfR) using CH4 as the sole electron donor. The V(V)-reducing capability of the biofilm kept increasing, with complete removal of V(V) achieved when the influent surface loading of V(V) was 363 mg m-2 day-1. Almost all V(V) was reduced to V(IV) precipitates, which is confirmed by a scanning electron microscope coupled to energy dispersive X-ray spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS). Microbial community analysis revealed that denitrifiers Methylomonas and Denitratisoma might be the main genera responsible for V(V) reduction. The constant enrichment of Methylophilus suggests that the intermediate (i.e., methanol) from CH4 metabolism might be used as the electron carriers for V(V) bioreduction. Intrusion of V(V) (2-5 mg/L, at the surface loading of 150-378 mg m-2 day-1) into the biofilm stimulated the secretion of extracellular polymeric substances (EPS), but high loading of V(V) (10 mg/L, at the surface loading of 668 mg m-2 day-1) decreased the amount of EPS. Metagenomic prediction analysis established the strong correlation between the secretion of EPS and the microbial metabolism associated with V(V) reduction, tricarboxylic acid cycle (TCA) cycle, methane oxidation, and ATP production, and EPS might relieve the oxidative stress induced by high loading of V(V). Colorimetric determination and a three-dimensional excitation-emission matrix (3D-EEM) showed that tryptophan and humic acid-like substances might play important roles in microbial cell protection and V(V) binding. Fourier transform infrared (FTIR) spectroscopy identified hydroxyl (-OH) and carboxyl (COO-) groups in EPS as the candidate functional groups for binding V(V).


Subject(s)
Methane , Vanadates , Biofilms , Bioreactors , Extracellular Polymeric Substance Matrix
2.
Environ Sci Pollut Res Int ; 25(7): 6609-6618, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29255986

ABSTRACT

We studied the effect of electron competition on chromate (Cr(VI)) reduction in a methane (CH4)-based membrane biofilm reactor (MBfR), since the reduction rate was usually limited by electron supply. A low surface loading of SO42- promoted Cr(VI) reduction. The Cr(VI) removal percentage increased from 60 to 70% when the SO42- loading increased from 0 to 4.7 mg SO42-/m2-d. After the SO42- loading decreased back to zero, the Cr(VI) removal further increased to 90%, suggesting that some sulfate-reducing bacteria (SRB) stayed in the reactor to reduce Cr(VI). However, a high surface loading of SO42- (26.6 mg SO42-/m2-d) significantly slowed down the Cr(VI) reduction to 40% removal, which was probably due to competition between Cr(VI) and SO42- reduction. Similarly, when 0.5 mg/L of Se(VI) was introduced into the MBfR, Cr(VI) removal percentage slightly decreased to 60% and then increased to 80% when input Se(VI) was removed again. The microbial community strongly depended on the loadings of Cr(VI) and SO42-. In the sulfate effect experiment, three genera were dominant. Based on the correlation between the abundances of the three genera and the loadings of Cr(VI) and SO42-, we conclude that Methylocystis, a type II methanotroph, reduced both Cr(VI) and sulfate, Meiothermus only reduced Cr(VI), and Ferruginibacter only reduced SO42-.


Subject(s)
Chromates/chemistry , Electrons , Methane/chemistry , Bacterial Physiological Phenomena , Biofilms , Bioreactors/microbiology , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...