Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 31(21): 30454-30466, 2024 May.
Article in English | MEDLINE | ID: mdl-38607489

ABSTRACT

The increase in the number of motor vehicles has intensified the impact of traffic sources on air quality. Our aim was to illustrate the characteristics of PM2.5 emissions from vehicles fueled with E10 (a blend of 10% ethanol and 90% gasoline). A 21-day PM2.5 sampling in a fully enclosed urban tunnel and the component analysis were completed, and the characteristics, sources, and health risks of tunnel PM2.5 were studied. Moreover, the PM2.5 pH and its sensitivity were investigated by the thermodynamic model (ISORROPIA-II). In addition, exposure models were used to assess the health risks of different heavy metals in PM2.5 to humans through respiratory pathways. The two-point Cu/Sb ratio (entrance: 4.0 ± 1.4; exit: 4.4 ± 1.7) was close to the diagnostic criteria indicating a significant impact from brake wear. NO3-, NH4+, and SO42- constituted the main components of water-soluble ions in PM2.5 of the tunnel, accounting for 83.0-84.6% of the total concentration of inorganic ions. The organic carbon/elemental carbon ratio of the tunnel was greater than 2, indicating that the contribution of gasoline vehicle exhaust was significant. The average emission factors of PM2.5 in the fleet was 31.4 ± 16.6 mg/(veh·km). The pH value of PM2.5 in a tunnel environment (4.6 ± 0.3) was more acidic than that in an urban environment (4.9 ± 0.6). The main sensitive factors of PM2.5 pH in the urban atmosphere and tunnel environment were total ammonia (sum of gas and aerosol, NH3) and temperature, respectively. The results of the health risk assessment showed that Pb posed a potential carcinogenic risk, while As and Cd presented unacceptable risks for tunnel workers. The non-carcinogenic risk index of heavy metals of PM2.5 in the tunnel environment exceeded the safety threshold.


Subject(s)
Air Pollutants , Environmental Monitoring , Particulate Matter , Vehicle Emissions , Particulate Matter/analysis , Air Pollutants/analysis , Vehicle Emissions/analysis , Air Pollution , Humans , Gasoline , Risk Assessment
2.
Sci Total Environ ; 926: 171791, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38508249

ABSTRACT

Fine particulate matter (PM2.5) from vehicle exhaust is typically emitted at breathing height and thus imposes severe adverse effects on human health and air quality. However, there is currently limited knowledge on the characteristics of PM2.5 in exhaust, specifically its chemical components, at different ambient temperatures. Particulate emissions from typical light-duty gasoline vehicles (LDGVs) were investigated on a chassis dynamometer according to the Worldwide Harmonized Light-Duty Test Cycle at ambient temperatures of 38 °C, 28 °C, 15 °C, 5 °C and - 7 °C. The results showed a significant increase in particulate mass (PM) and particle number (PN) emissions with decreasing ambient temperature, particularly during cold starts below 5 °C. The particle size distributions exhibited distinct bimodal patterns, with accumulation-mode (AM) particles (60-125 nm) dominating the gasoline direct injection (GDI) distribution and nucleation-mode (NM) particles (8-12 nm) dominating the port fuel injection (PFI) distribution. AM particles were more temperature-sensitive than NM particles. Lower temperatures produced higher emissions of elements, carbonaceous components, and large-ring polycyclic aromatic hydrocarbons, while water-soluble ions showed an opposite trend. The total toxic equivalent, primarily influenced by benzo[a]pyrene, was significantly higher at -7 °C. The penalty distribution of LDGV PM and PN, defined by comparing the emissions at the various temperatures to those at regulated temperatures (23-30 °C), exhibited notable temporal heterogeneity (winter > autumn > spring > summer) and spatial heterogeneity (northern China > southern China). These findings are essential for establishing more stringent vehicle emission standards and improving emission models in cold environments.

3.
J Mol Model ; 30(2): 44, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38240929

ABSTRACT

CONTEXT: To explore the impact of OGs (OGs) on formaldehyde (HCHO) adsorption by modified activated carbon, this paper studied the influence of OGs on HCHO adsorption characteristics, varying the groups including ester, carboxyl, and hydroxyl. Employing density functional theory (DFT), the effects of various OGs on the structure of N-doped activated carbon through GGA-PBE exchange-correlation functionals by Materials Studio combined with Gaussian software. The types of weak interactions during the adsorption process were calculated by RDG, elucidating the mechanism through which the three OGs affect HCHO adsorption on N-doped activated carbon. The dynamic adsorption process of HCHO was simulated by molecular dynamics (MD). The influence and proportion of OGs on HCHO adsorption were subsequently analyzed using van der Waals and electrostatic interactions, determining differences in formaldehyde adsorption effects across OG types. The carboxyl group exhibits the most robust synergistic adsorption effect on the modified activated carbon. There is a notable alteration in the position and distribution of electrostatic potential extremes observed following carboxyl modification. The calculation results show that the adsorption energy of hydroxyl groups on modified activated carbon is the highest, at -5.07 kcal/mol, with a transfer charge of 0.014 e. Following the introduction of carboxyl groups, the proportion of electrostatic interactions escalated from the initial 24% to 38%. This study will provide new ideas for guiding the design of activated carbon for efficient adsorption of formaldehyde. METHODS: The modified activated carbon fragments of three OGs were constructed by Materials Studio and Gaussian software, and the surface electrostatic potential polarity and area distribution, charge change, adsorption energy, and transferred charge of each molecular fragment were calculated. Moreover, cell models of OGs with the same dimensions were constructed to simulate the adsorption amount, heat of adsorption, interaction energy, radial distribution function, and hydrogen-bonding interactions for methane at room temperature and pressure. The results were consistent with the DFT simulations.

4.
Toxics ; 11(10)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37888666

ABSTRACT

Children's respiratory health is vulnerable to air pollution. Based on data collected from June 2019 to June 2022 at a children's hospital in Zhengzhou, China, this study utilized Spearman correlation analysis and a generalized additive model (GAM) to examine the relationship between daily visits for common respiratory issues in children and air pollutant concentrations. Results show that the number of upper respiratory tract infection (URTI), pneumonia (PNMN), bronchitis (BCT), and bronchiolitis (BCLT) visits in children showed a positive correlation with PM2.5, PM10, NO2, SO2, and CO while exhibiting a negative correlation with temperature and relative humidity. The highest increases in PNMN visits in children were observed at lag 07 for NO2, SO2, and CO. A rise of 10 µg/m3 in NO2, 1 µg/m3 in SO2, and 0.1 mg/m3 in CO corresponded to an increase of 9.7%, 2.91%, and 5.16% in PNMN visits, respectively. The effects of air pollutants on the number of BCT and BCLT visits were more pronounced in boys compared to girls, whereas no significant differences were observed in the number of URTI and PNMN visits based on sex. Overall, air pollutants significantly affect the prevalence of respiratory diseases in children, and it is crucial to improve air quality to protect the children's respiratory health.

5.
Sensors (Basel) ; 23(17)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37688111

ABSTRACT

Enhancing gasoline detergency is pivotal for enhancing fuel efficiency and mitigating exhaust emissions in gasoline vehicles. This study investigated gasoline vehicle emission characteristics with different gasoline detergency, explored synergistic emission reduction potentials, and developed versatile emission prediction models. The results indicate that improved fuel detergency leads to a reduction of 5.1% in fuel consumption, along with decreases of 3.2% in total CO2, 55.4% in CO, and 15.4% in HC emissions. However, during low-speed driving, CO2 and CO emissions reductions are limited, and HC emissions worsen. A synergistic emission reduction was observed, particularly with CO exhibiting a pronounced reduction compared to HC. The developed deep-learning-based vehicle emission model for different gasoline detergency (DPVEM-DGD) enables accurate emission predictions under various fuel detergency conditions. The Pearson correlation coefficients (Pearson's r) between predicted and measured values of CO2, CO, and HC emissions before and after adding detergency agents are 0.913 and 0.934, 0.895 and 0.915, and 0.931 and 0.969, respectively. The predictive performance improves due to reduced peak emissions resulting from improved fuel detergency. Elevated gasoline detergency not only reduces exhaust emissions but also facilitates more refined emission management to a certain extent.

6.
ACS Omega ; 8(37): 34134-34145, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37744810

ABSTRACT

The detergency of motor gasoline is closely related to vehicle exhaust emissions and fuel economy. This paper proposed an improved method for the rapid detection of gasoline detergency based on the deposit images of test gasoline on aluminum plates produced by a multichannel gasoline detergency simulation test (MGST). The detection algorithm system was structured to recognize the deposit plate images by computer vision based on the convolutional neural networks (CNNs). Compared with the traditional simulation test, the improved MGST method resulted in significant reductions in fuel consumption, cost, and test time. The performance of three transfer learning models (Inception-ResNet-V2, Inception-V3, and ResNet50-V2) and a customized CNN was evaluated in the detection algorithm system, and their detection accuracies reached 94, 94, 88, and 82%. Inception-RsNet-V2 was selected due to its higher accuracy and better robustness. Based on the model interpretation, it is evident that the model undergoes feature extraction from the sediment deposits on the deposit plate. Subsequently, it employed the acquired deposit features to accurately detect gasoline samples that failed to meet detergency standards. This approach was proved to be effective in enhancing the detection process and ensuring reliable results for gasoline detergency evaluation. It is beneficial to environmental protection regulators for managing market gasoline detergency and urban mobile source pollution. In addition, a deposit plate image database should be established to further improve the detection model performance during the environmental regulation.

7.
Environ Res ; 237(Pt 1): 116890, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37604223

ABSTRACT

The significant impact of low ambient temperature, which was less regulated, on vehicle exhaust emissions had garnered considerable attention. This study investigated the impact of ambient temperature on exhaust emissions based on the global meta-analysis. The estimated sizes (mean difference, MDt) of 11 exhaust pollutants were quantified with 1795 observations at low ambient temperatures (LATs, -18 °C to -7 °C) versus warm ambient temperatures (WATs, 20 °C-30 °C). The results indicated a strong and positive effect of LATs on vehicular emissions, with the average ratio of vehicular emission factors at LATs to those at WATs (EFLAT/EFWAT) ranging from 1.14 to 3.84. Oil-based subgroup analysis indicated a quite large MDt [NOx] of diesel engines (12.42-15.10 mg km-1·k-1). Particulate emissions were 0.22-1.41 mg km-1·k-1 enhanced during cold-start tests at LATs. The application of particulate filters on motor vehicles greatly reduced the impact of ambient temperature on tailpipe particulate emissions, at the expense of induced NOx emissions. During the Federal Test Procedure (FTP-75), exhaust emissions showed higher temperature dependence compared to the averaged levels (1.31-39.31 times). Locally weighted regression was used to determine exhaust temperature profiles, revealing that gasoline vehicles emitted more particulates at LATs, while diesel vehicles showed the opposite trend. Given the widespread use of motor vehicles worldwide, future motor vehicle emission standards should include tighter limits on exhaust emissions at LATs.

8.
Environ Res ; 216(Pt 3): 114701, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36332670

ABSTRACT

To reduce the heavy dependence on petroleum, bioethanol has been increasingly employed as an alternative and sustainable transportation fuel. However, the characteristics of black carbon (BC) emissions from E10 petrol vehicles (i.e., ethanol-gasoline containing 10% ethanol) are still unclear, especially under real driving conditions. Here, a tunnel test was conducted during a cold winter. This tunnel was characterized by heavy traffic comprising more than 98% E10-fueled gasoline vehicles (GVs). Real-time BC concentrations, traffic parameters and meteorological conditions were recorded during the sampling campaign. The average BC concentration inside the tunnel (10.94 ± 5.02 µg m-3) was almost twice the background concentration. Based on aethalometer AE33 in situ measurements and the minimum R-squared (MRS) method, real-time aerosol light absorption was apportioned. The light absorption proportions of BC, primary brown carbon (BrC1) and secondary brown carbon (BrC2) were 79.86%, 2.78% and 17.36%, respectively, at 370 nm. The BC emission factor (EFBC) of the E10-fueled vehicles was 1.09 ± 0.49 mg km-1·veh-1 and 15.24 ± 6.85 mg·(kg fuel)-1, lower than those of traditional gasoline fueled vehicles in previous studies. This study can support the compilation of vehicular BC emission inventories, provide recommendations for biofuel policies and contribute to comprehensively understanding the climatic impact of E10 petrol.


Subject(s)
Air Pollutants , Gasoline , Gasoline/analysis , Air Pollutants/analysis , Vehicle Emissions/analysis , Aerosols/analysis , Soot/analysis , Carbon/analysis , Ethanol/analysis , Environmental Monitoring/methods
9.
Environ Pollut ; 308: 119689, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35772619

ABSTRACT

Engine start-stop (S&S) technology has been substantially incorporated into modern vehicles to save fuel during idling in congested urban areas because fuel economy regulations have become more stringent. However, the potential for increasing particle emissions after engine restarts, especially in cold environments, is of great concern. To investigate the effects of S&S systems on fuel consumption and tailpipe emissions, a chassis dynamometer was employed to measure the fuel consumption, particulate matter (PM), solid particle number (PN), particle number size distribution and black carbon (BC) for a typical gasoline direct injection vehicle when the S&S was on (S&S-on) and when the S&S was off (S&S-off) according to the worldwide harmonized light-duty test cycle in both hot (28 °C) and cold (5 °C) environments. S&S operation resulted in 3.1-4.3% fuel-savings at 28 °C but had a tendency to increase particulate emissions, especially of BC (21.8-31.8%) and PM (19.2-32.8%). Although PN emissions with S&S-on over the entire cycle were slightly lower than those with S&S-off, more particles were emitted during the engine restart moments. In a cold environment, the fuel-savings advantage of the S&S system was weakened, and the negative impacts on the particle emissions during the restart moment worsened. The S&S system resulted in higher abundances of accumulation mode particles, especially under cold ambient conditions. The relationship between the PN reduction rates and idling segments was determining to be exponential. Our results indicate that the S&S system, which may increase particle emissions during restarts, does save fuel, and that a comprehensive evaluation of the system in cold environments is needed to determine the serviceability of new engine technologies and after-treatments.


Subject(s)
Air Pollutants , Gasoline , Air Pollutants/analysis , Dust , Gasoline/analysis , Motor Vehicles , Particulate Matter/analysis , Soot/analysis , Vehicle Emissions/analysis
10.
Huan Jing Ke Xue ; 43(4): 1777-1787, 2022 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-35393801

ABSTRACT

To explore the emission characteristics of volatile organic compounds (VOCs) from vehicular exhaust sources and evaporative sources with ethanol gasoline (E10) as the main fuel, VOCs sampling campaigns were carried out in the north third ring tunnel of Zhengzhou city for two consecutive weeks in December 2019. In addition, the characteristics of traffic flow and environmental information were also monitored in the tunnel. Firstly, 106 VOCs were quantified using gas chromatography/mass spectrometry (GC/MS), and then source apportionment of VOCs in the tunnel was carried out using a positive matrix factorization (PMF5.0)-chemical mass balance (CMB8.2) composite model. Finally, the ozone formation potential (OFP) and secondary organic aerosol formation potential (SOAFP) of vehicle exhaust sources and evaporative sources were analyzed using the maximum incremental reactivity (MIR) and fractional aerosol coefficient (FAC). The results showed that ρ(VOCs) in the tunnel was (2794.5±147.4) µg·m-3 during the experiment, among which halogenated hydrocarbons[(32.4±2.0)%] accounted for the highest proportion, followed by aromatic hydrocarbons[(27.5±0.6)%] and alkanes[(23.3±0.8)%]. Source apportionment of vehicular VOCs showed that exhaust emissions (62.5%)>evaporative emissions (37.5%), whereas the contribution of OFP was that exhaust emissions (71.9%)>evaporative emissions (28.1%), and the contribution of SOAFP was that exhaust emissions (75.8%)>evaporative emissions (24.2%). The dominant components of OFP in evaporative sources were m,p-diethylbenzene, isoprene, and trans-2-pentene, whereas m,p-diethylbenzene, m,p-xylene, and 1,2,3-trimethylbenzene were the dominant components of SOAFP. The major components of OFP in exhaust sources were m,p-xylene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene, whereas m,p-xylene, m,p-diethylbenzene, and 1,3,5-trimethylbenzene were the dominant components of SOAFP. In regions where ethanol gasoline is used, special attention should be paid not only to the exhaust emissions control but also to strengthening the emissions reduction of VOCs from vehicle evaporative sources, especially the high active components such as aromatic hydrocarbons and alkenes.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Aerosols/analysis , Air Pollutants/analysis , China , Environmental Monitoring/methods , Ethanol , Gasoline/analysis , Ozone/analysis , Vehicle Emissions/analysis , Volatile Organic Compounds/analysis
11.
Water Sci Technol ; 84(3): 725-736, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34388130

ABSTRACT

The effects of different concentrations of organic matter on the biological activity and nitrogen removal performance of the anaerobic ammonium oxidation (anammox) system was studied. The results showed that under the conditions of low influent total organic carbon (TOC ≤ 100 mg/L), the activity rate of anammox bacteria was basically unaffected, the anammox bacteria and denitrifying bacteria formed a good synergistic effect, and the maximum total nitrogen (TN) removal efficiency reached 95.77%. However, when the influent TOC concentration was up to 200 mg/L, the activity of anammox bacteria was seriously inhibited. At this time, denitrification becomes the main pathway of nitrogen removal, the effluent ammonia nitrogen content increases, and the TN removal efficiency decreases to 64.17%. High-throughput sequencing analysis showed that with the increase in organic matter concentration, the relative abundance of Proteobacteria and Planctomycetes changed significantly. In particular, the relative abundance proportion of Proteobacteria increased from 21.06% to 25.57%, the Planctomycetes dropped from 10.01% to 3.03% and the Candidatus Brocadia genus had the largest decrease. In conclusion, the concentration range of organic matter for collaborative denitrification was proposed in this study, which provided theoretical reference for the practical application of anammox biofilm process.


Subject(s)
Denitrification , Nitrogen , Biofilms , Bioreactors , Oxidation-Reduction , Sewage , Wastewater
12.
Environ Res ; 200: 111463, 2021 09.
Article in English | MEDLINE | ID: mdl-34111436

ABSTRACT

The Chinese government has developed an ambitious project to promote the application of ethanol gasoline (E10) on a national scale since 2017. Given the difference in fuel properties between E10 and traditional gasoline, it is necessary to evaluate the volatile organic compound (VOC) emissions from E10-fuelled vehicles. In this study, a two-week sampling campaign was conducted in an urban tunnel, in which E10-fuelled vehicles were dominant, to evaluate the characteristics of VOC emissions from the mixed fleet. In total, 105 VOC species were identified, and the ozone formation potential (OFP) and secondary organic aerosol formation potential (SOAFP) were estimated. The results showed that for vehicular VOC concentrations in the tunnel, alkanes, oxygenated VOCs (OVOCs) and alkenes were the most abundant VOC groups, with the average proportion being more than 80% of the total VOCs. The fleet-average VOC emission factor (EF) was 14.8 mg/km/veh, which was much lower than that from traditional gasoline-fuelled vehicle fleets, and alkanes, OVOCs, alkenes and aromatics were the major VOC groups. Because of the large number of E10-fuelled vehicles in the mixed fleet, a high proportion of OVOCs among the vehicular VOC emissions was observed. Ethane, acrolein, ethanol, ethylene and toluene were the top five VOC species with the largest EF in VOC emissions from the fleet. Alkenes were the main contributors with an average contribution of 43.9% of the total OFP, whereas aromatics dominated the total SOAFP by 95.8% on average. These results may provide a reference for the extensive application of ethanol gasoline and the development of vehicular emission models.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Aerosols/analysis , Air Pollutants/analysis , China , Environmental Monitoring , Ozone/analysis , Vehicle Emissions/analysis , Volatile Organic Compounds/analysis
13.
Environ Sci Pollut Res Int ; 28(34): 47227-47238, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33893578

ABSTRACT

Vehicular emissions have become a primary anthropogenic source of urban atmospheric volatile halogenated hydrocarbons (VHCs) with the rapid increase of vehicle population, while characteristics of the VHC emissions from different vehicles were rarely systematically investigated. In this study, the on-road tailpipe emissions were sampled from seven in-use vehicles, including two light-duty gasoline vehicles (LDGV), three light-duty diesel trucks (LDDT), one heavy-duty diesel truck (HDDT), and a liquefied petroleum gas-electric hybrid bus (LPGB), using a portable emission measurement system (PEMS) combined with summa canisters, and 35 individual VHC species were identified by a gas chromatography mass spectrometry detector (GC-MSD). Results showed that VHC emissions under urban driving conditions were much higher than those on the suburban roads and highways. The VHC emission factors of LDGV were 1.2 ± 0.34 mg/km and 3.6 ± 1.5, 6.8 ± 0.89, and 1.6 ± 0.28 mg/km for LDDT, HDDT, and LPGB, respectively. For the LDGV, chlorobenzene, 1,2-dichloroethane, and hexachlorobutadiene were the top three VHC species. 1,2-Dichloroethane, trichloromethane, and methyl chloride were the main VHC constituents in the LDDT. Chlorobenzene was the most abundant VOC species for the HDDT, followed by 1,2-dichloroethane and 1,4-dichlorobenzene. The major species for LPGB were 1,2,4-trichlorobenzene, carbon tetrachloride, and benzyl chloride. The major tailpipe VHC species obtained in this study were partial consistent with previous studies with different test methods. The results provide an initial evaluation of the tailpipe VHC emissions, which may provide experimental data support for the refined source apportionment of atmospheric VHCs and the control of vehicular VHCs.


Subject(s)
Air Pollutants , Hydrocarbons, Halogenated , Air Pollutants/analysis , Environmental Monitoring , Gasoline/analysis , Motor Vehicles , Vehicle Emissions/analysis
14.
Bioresour Technol ; 330: 124954, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33740583

ABSTRACT

Polyethylene glycol-600 (PEG-600), as a carrier for slow release of organic substances, can improve the biocompatibility of packing fillers and the construction of biofilms. The gradient experiments were established to evaluate the feasibility of adding different content of PEG-600 to the biofilter for enhancing toluene removal. In particular, the evolution trend of microbial community embedded in packing fillers was measured by 16S rRNA-based gene sequencing. Results showed that the toluene removal efficiency of biofilter with 7.5% adding content of the PEG-600 was greatly improved, and the maximum elimination capacity of 152 g/(m3·h) was obtained. The introduction of PEG-600 enhanced the tolerance ability to withstand the transient impact loading and intensified the production of extracellular polymeric substances and bonding strength of biofilms. It should be noted that the abundance of Pseudomonas and Steroidobacter at genus level increased significantly. The microbial community evolved into a co-degradation system of toluene and PEG-600.


Subject(s)
Air Pollutants , Microbiota , Biodegradation, Environmental , Filtration , Nutrients , Polyethylene Glycols , RNA, Ribosomal, 16S/genetics , Toluene
15.
RSC Adv ; 9(70): 40961-40965, 2019 Dec 09.
Article in English | MEDLINE | ID: mdl-35540036

ABSTRACT

This paper reported a novel method for the determination of total phosphorus (TP) content in soil and sludge by a headspace gas chromatography (HS-GC) method. It was based on a reaction between the soluble phosphate in the digestion solution and calcium oxalate solid to form a calcium phosphate precipitate and release oxalate ions, which can react with permanganate to form carbon dioxide, which was then measured by HS-GC. The results showed the complete conversion of phosphate (meanwhile to free oxalate ions in calcium oxalate) in 15 min at 60 °C. The present method has good repeatability (RSD < 2.6%) and good accuracy (RD < 7.3%) compared to the reference method. Therefore, the present HS-GC method can become a more effective method for determining the TP content in soil and sludge samples.

16.
Sci Rep ; 7: 42241, 2017 02 13.
Article in English | MEDLINE | ID: mdl-28198800

ABSTRACT

The performances of two identical biofilters, filled with a new composite packing material (named CM-5) embedded with functional microorganisms or sterilized CM-5 without microorganisms, were investigated for H2S treatment. Running parameters in terms of microbial counts, pressure drops, and inlet and outlet H2S concentrations were measured. The results show that the microbial count of the CM-5 was approximately ×105 CFU/g before being filled into the biofilter, while that of the sterilized CM-5 was negligible. The functional microorganisms embedded in CM-5 adapted to the environment containing H2S quickly. In most cases, pressure drops of the CM-5 biofilter were slightly higher than those of the sterilized CM-5 biofilter when the gas flow rate was 0.6-2.5 m3/h. The maximum elimination capacity (EC) of the CM-5 biofilter in treating H2S could reach up to 65 g/(m3·h) when the loading rate (LR) was approximately 80 g/(m3·h). If the LR was much higher, the measured EC showed a slight downward trend. The experimental ECs of biofilters were fitted by two typical dynamic models: the Michaelis-Menten model and the Haldane model. Compared with the Michaelis-Menten model, the Haldane model fit the experimental ECs better for the two biofilters because of the presence of the substrate inhibition behaviour.


Subject(s)
Bacteria/metabolism , Hydrogen Sulfide/isolation & purification , Biodegradation, Environmental , Bioreactors , Colony Count, Microbial , Filtration/instrumentation , Kinetics , Models, Theoretical , Pressure
17.
Environ Technol ; 38(8): 945-955, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27470529

ABSTRACT

A composite packing material (CM-5) was prepared in this study, mainly consisting of compost with functional microorganisms, calcium carbonate (CaCO3), perlite, cement and plant fiber. To get stronger compressive strength, mass ratios of these components were optimized based on single factor experiments, and finally adding amounts of perlite, cement, plant fiber, CaCO3, compost and binder at 18%, 18%, 7%, 13%, 17% and 27%, respectively. According to the optimum proportion, CM-5 was extruded in cylindrical shape (12 mm in diameter and 20 mm in length) with a bulk density of 470 kg m-3, a moisture retention capacity of 49% and the microbial counts of × 105 CFU g-1 of packing material. The cumulative release rates of total organic carbon (TOC) and total nitrogen (TN) from CM-5 were 3.1% and 6.5%, respectively, after 19 times extraction in distilled water. To evaluate the H2S removal capacity, CM-5 was compared with an organic (corncob) and an inorganic (ceramsite) packing material in three biofilters. The results showed that CM-5 had higher H2S removal capacity compared with corncob and ceramsite. CM-5 could avoid the large fluctuation of pH value and pressure drop during the operation. The maximum H2S removal capacity of CM-5 was 12.9 g m-3 h-1 and the removal efficiency could maintain over 95.4% when the inlet H2S loading rate was lower than 11.3 g m-3 h-1 without any addition of nutrients and pH buffer substances. Besides, only 2-3 days were needed for the recovery of biofiltration performance after about two weeks of idle period.


Subject(s)
Bioreactors/microbiology , Filtration/methods , Nitrogen/chemistry , Volatile Organic Compounds/chemistry , Aluminum Oxide/chemistry , Biodegradation, Environmental , Buffers , Carbon/chemistry , Equipment Design , Hydrogen Sulfide/chemistry , Hydrogen-Ion Concentration , Organic Chemicals/chemistry , Plants/chemistry , Refuse Disposal/methods , Silicon Dioxide/chemistry , Soil , Waste Disposal, Fluid/methods , Zea mays
18.
Environ Pollut ; 216: 223-234, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27267738

ABSTRACT

Vehicle emissions are greatly influenced by various factors that are related to engine technology and driving conditions. Only the fuel injection method and ambient temperature are investigated in this research. Regulated gaseous and particulate matter (PM) emissions from two advanced gasoline-fueled vehicles, one with direct fuel injection (GDI) and the other with port fuel injection (PFI), are tested with conventional gasoline and ethanol-blended gasoline (E10) at both -7 °C and 30 °C. The total particle number (PN) concentrations and size distributions are monitored with an Electrical Low Pressure Impactor (ELPI(+)). The solid PN concentrations are measured with a condensation particle counter (CPC) after removing volatile matters through the particle measurement program (PMP) system. The results indicate that decreasing the ambient temperature from 30 °C to -7 °C significantly increases the fuel consumption and all measured emissions except for NOx. The GDI vehicle exhibits lower fuel consumption than the PFI vehicle but emits more total hydrocarbons (THC), PM mass and solid PN emissions at 30 °C. The adaptability of GDI technology appears to be better than that of PFI technology at low ambient temperature. For example, the CO, THC and PM mass emission factors of the PFI vehicle are higher than those of the GDI vehicle and the solid PN emission factors are comparable in the cold-start tests at -7 °C. Specifically, during start-up the particulate matter emissions of the PFI are much higher than the GDI. In most cases, the geometric mean diameter (GMD) of the accumulation mode particles is 58-86 nm for both vehicles, and the GMD of the nucleation mode particles is 10-20 nm. The results suggest that the gaseous and particulate emissions from the PFI vehicle should not be neglected compared to those from the GDI vehicle especially in a cold environment.


Subject(s)
Air Pollution/analysis , Particulate Matter/analysis , Temperature , Vehicle Emissions/analysis , Air Pollution/prevention & control , China , Environmental Monitoring , Gasoline/analysis , Hydrocarbons/analysis , Particle Size , Particulate Matter/chemistry , Vehicle Emissions/prevention & control
19.
Water Sci Technol ; 66(11): 2461-7, 2012.
Article in English | MEDLINE | ID: mdl-23032779

ABSTRACT

An improved drop-sphere-forming (IDSF) method was applied to synthesise chitosan resin. Chitosan resin was synthesised by the self-made device and cross-linked with epichlorohydrin. The influences of concentration of chitosan-acetic acid solution, air flow, reaction time and the dosage of epichlorohydrin were investigated during synthesising. The satisfactory chitosan particles were prepared by chitosan-acetic acid solution (3%) under a controlled air flow of 0.6 m(3) h(-1), After 6 h of reaction at 80 °C with an epichlorohydrin dosage of 2 mL per 5 mL wet resin, the chitosan cross-linked resin has the best adsorption capacity. After 2 h of adsorption at pH = 3.0 and 25 °C with an adsorbent dosage of 2 g L(-1), the maximum adsorption capacity (112 mg g(-1)) was reached for an initial Cr(VI) concentration of 146 mg L(-1). Compared with other adsorbents, this synthesis method was simple and economic; moreover, the cross-linked chitosan resin can remove Cr(VI) efficiently.


Subject(s)
Chitosan/analogs & derivatives , Chitosan/chemical synthesis , Chromium/isolation & purification , Water Pollutants, Chemical/isolation & purification , Adsorption , Cross-Linking Reagents/chemistry , Epichlorohydrin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...