Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732946

ABSTRACT

Understanding the mechanism of mode-locking in a laser with high-order transverse mode is important for achieving an ultrashort pulses train under more complicated conditions. So far, mode-locking with high-order transverse mode has not been reported in other lasers except the multimode fiber laser. This paper demonstrates robust mode-locking with high-order transverse mode in a Kerr-lens mode-locked vertical-external-cavity surface-emitting laser for the first time, to the best of our knowledge. While the longitudinal modes are locked, continuous mode-locking accompanied by high-order transverse mode up to TEM40 is observed. The threshold of the mode-locking is only a little bigger than that of the lasing. After the laser oscillation is built up, the mode-locked pulse train can be obtained almost immediately and maintained until the thermal rollover of the laser. Output powers of 717 mW under fundamental mode and 666 mW under high-order transverse mode are achieved with a 4.3 ps pulse duration and 1.1 GHz pulses repetition rate, and some phenomenological explanations to the related characteristics of the mode-locked operation of high-order transverse mode in the vertical-external-cavity surface-emitting laser are proposed.

2.
Sensors (Basel) ; 24(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38676226

ABSTRACT

Advanced light sources in the blue-green band are crucial for underwater wireless optical communication (UWOC) systems. Vertical-external-cavity surface-emitting lasers (VECSELs) can produce high output power and good beam quality, making them suitable for UWOC. This paper presents a 108 m distance UWOC based on a 100 mW 490 nm blue VECSEL and an acousto-optic modulator (AOM). The high-quality beam, which is near diffraction-limited, undergoes relatively small optical attenuation when using a conventional avalanche photodiode (APD) as the detector and employing 64-pulse position modulation (PPM). At the time-slot frequency of 50 MHz, the bit error rate (BER) of the UWOC was 2.7 × 10-5. This is the first reported AOM-based UWOC system with a transmission distance over 100 m. The estimated maximum transmission distance may be improved to about 180 m by fully utilizing the detection accuracy of the APD according to the measured attenuation coefficient of the blue VECSEL used. This type of UWOC system, composed of a high-beam-quality light source and a conventional detector, make it more closely suited to practical applications.

3.
Opt Express ; 32(4): 5011-5021, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38439238

ABSTRACT

Semiconductor disk lasers can produce high output power and good beam quality simultaneously. The high intracavity circulating power of about hundreds of watts, along with the flexibility of tailorable emitting wavelengths, make it an attractive light source for obtaining ultraviolet (UV) radiation from near-infrared lasers through nonlinear frequency conversion. This work reports a frequency tripled 327 nm semiconductor disk laser with record output power and wavelength tuning range by using a type-I phase-matched LiB3O5 (LBO) crystal and a type-I phase-matched ß-BaB2O4 (BBO) crystal as the frequency-doubling and -tripling crystals respectively. Thanks to the obviously larger nonlinear coefficient of the type-I phase-matched BBO compared to the commonly used type-II phase-matched LBO, as well as the small spot size specifically designed at the crystal location, the maximum output power of UV lasers reaches 538 mW, corresponding to an optical-to-optical conversion efficiency from pump to UV laser of about 1.14%. A wavelength tuning range of about 8.6 nm and good power stability with a standard deviation of about 0.94 are also achieved.

4.
Appl Opt ; 60(22): 6706-6712, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34612914

ABSTRACT

We report a widely tunable optically pumped vertical-external-cavity surface-emitting laser. The multiple quantum wells in the active region of the gain chip are generally designed to form the resonant periodic gain structure, and three different methods are used to tune the oscillating wavelength. The maximum wavelength coverage of 45 nm is obtained when a 2 mm thickness birefringent filter is introduced in a straight-line cavity, while the tuning range of 8 nm is performed by employing a 0.15 mm thickness uncoated Fabry-Perot etalon. For the first time, to the best of our knowledge, we present an 11 nm tuning range by the use of an inserted blade as the tuning element, and the related wavelength tuning mechanism is analyzed.

5.
Opt Express ; 29(11): 16572-16583, 2021 May 24.
Article in English | MEDLINE | ID: mdl-34154217

ABSTRACT

Dual-wavelength lasers with separation from several nanometers to tens of nanometers at 1 µm waveband are attractive light sources for terahertz generation. This work reports a compact dual-wavelength vertical-external-cavity surface-emitting laser with simple elements. The gain chip is regularly designed and epitaxially grown, and the laser cavity is the most common straight line cavity. By the use of a blade as the tuning element in cavity, the laser wavelength can be tuned continuously, and the stable dual-wavelength oscillation can be obtained when the blade is situated at a certain position. The total output power of 85 mW, which is limited by our pump source, is produced when the laser wavelengths are at 961 nm and 970 nm. We have also analyzed the evolution mechanism and the stability of this dual-wavelength laser.

SELECTION OF CITATIONS
SEARCH DETAIL
...