Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 17: 1135986, 2023.
Article in English | MEDLINE | ID: mdl-36845434

ABSTRACT

Wireless sensing-based human-vehicle recognition (WiHVR) methods have become a hot spot for research due to its non-invasiveness and cost-effective advantages. However, existing WiHVR methods shows limited performance and slow execution time on human-vehicle classification task. To address this issue, a lightweight wireless sensing attention-based deep learning model (LW-WADL) is proposed, which consists of a CBAM module and several depthwise separable convolution blocks in series. LW-WADL takes raw channel state information (CSI) as input, and extracts the advanced features of CSI by jointly using depthwise separable convolution and convolutional block attention mechanism (CBAM). Experimental results show that the proposed model achieves 96.26% accuracy on the constructed CSI-based dataset, and the model size is only 5.89% of the state of the art (SOTA) model. The results demonstrate that the proposed model achieves better performance on WiHVR tasks while reducing the model size compared to SOTA model.

2.
ISA Trans ; 120: 342-359, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33773766

ABSTRACT

This paper proposes a hybrid condition monitoring approach, which integrates bond graph model-based diagnostic technique and data-driven remaining useful life (RUL) prediction, for a nonlinear mechatronic system. In this approach, various degrading faults can be considered and the physical degradation model is not required for RUL prediction. Firstly, an integrated fault signature matrix is proposed by the causal path of bicausal-bond graph model to improve fault isolation performance. After that, a biogeography-based optimization (BBO)-particle filter is developed for fault identification. For prognosis, an optimized extreme learning machine (OELM) is proposed where the hidden layer biases and input weights are optimized by BBO. The fault identification results provide data set to train the OELM for prognosis. Finally, the effectiveness of the approach is verified by simulation and experiment results.

SELECTION OF CITATIONS
SEARCH DETAIL
...