Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Bio Mater ; 7(5): 3358-3374, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38717870

ABSTRACT

Exosomes are promising nanocarriers for drug delivery. Yet, it is challenging to apply exosomes in clinical use due to the limited understanding of their physiological functions. While cellular uptake of exosomes is generally known through endocytosis and/or membrane fusion, the mechanisms of origin-dependent cellular uptake and subsequent cargo release of exosomes into recipient cells are still unclear. Herein, we investigated the intricate mechanisms of exosome entry into recipient cells and intracellular cargo release. In this study, we utilized chiral graphene quantum dots (GQDs) as representatives of exosomal cargo, taking advantage of the superior permeability of chiral GQDs into lipid membranes as well as their excellent optical properties for tracking analysis. We observed that the preferential cellular uptake of exosomes derived from the same cell-of-origin (intraspecies exosomes) is higher than that of exosomes derived from different cell-of-origin (cross-species exosomes). This uptake enhancement was attributed to receptor-ligand interaction-mediated endocytosis, as we identified the expression of specific ligands on exosomes that favorably interact with their parental cells and confirmed the higher lysosomal entrapment of intraspecies exosomes (intraspecies endocytic uptake). On the other hand, we found that the uptake of cross-species exosomes primarily occurred through membrane fusion, followed by direct cargo release into the cytosol (cross-species direct fusion uptake). We revealed the underlying mechanisms involved in the cellular uptake and subsequent cargo release of exosomes depending on their cell-of-origin and recipient cell types. Overall, this study envisions valuable insights into further advancements in effective drug delivery using exosomes, as well as a comprehensive understanding of cellular communication, including disease pathogenesis.


Subject(s)
Exosomes , Quantum Dots , Quantum Dots/chemistry , Exosomes/metabolism , Exosomes/chemistry , Humans , Biocompatible Materials/chemistry , Biocompatible Materials/metabolism , Biocompatible Materials/pharmacology , Fluorescent Dyes/chemistry , Particle Size , Materials Testing , Endocytosis , Graphite/chemistry
2.
Biophys J ; 123(9): 1106-1115, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38549371

ABSTRACT

Biofilms, microbial communities enclosed in the self-produced extracellular matrix, have a significant impact on human health, environment, and industry. The pathogen Staphylococcus aureus (S. aureus) is recognized as one of the most frequent causes of biofilm-related infections. Phenol-soluble modulins (PSMs) serve as a crucial component, fortifying S. aureus biofilm matrix through self-assembly into amyloid fibrils, which enhances S. aureus colonization and resistance to antibiotics. However, the role of shear rate, one of the critical physiological factors within blood vessels, on the formation of PSM amyloids remains poorly understood. In this work, using a combination of thioflavin T fluorescence kinetic studies, circular dichroism spectrometry, and electron microscopy, we demonstrated that shear rates ranging from 150 to 300 s-1 accelerate fibrillation of PSMα1, α3, and α4 into amyloids, resulting in elongated amyloid structures. Furthermore, PSMα1, α3, and α4 predominantly self-assembled into amyloid fibers with a cross-α structure under shear conditions, deviating from the typical ß-sheet configuration of PSM amyloids. These findings imply the role of shear rates within the bloodstream on enhancing PSM self-assembly that is associated with S. aureus biofilm formation.


Subject(s)
Amyloid , Biofilms , Staphylococcus aureus , Amyloid/chemistry , Amyloid/metabolism , Biofilms/growth & development , Bacterial Toxins/chemistry , Bacterial Toxins/metabolism , Kinetics
3.
Front Chem ; 11: 1207579, 2023.
Article in English | MEDLINE | ID: mdl-37601907

ABSTRACT

Chirality, defined as "a mirror image," is a universal geometry of biological and nonbiological forms of matter. This geometry of molecules determines how they interact during their assembly and transport. With the development of nanotechnology, many nanoparticles with chiral geometry or chiroptical activity have emerged for biomedical research. The mechanisms by which chirality originates and the corresponding synthesis methods have been discussed and developed in the past decade. Inspired by the chiral selectivity in life, a comprehensive and in-depth study of interactions between chiral nanomaterials and biological systems has far-reaching significance in biomedicine. Here, we investigated the effect of the chirality of nanoscale drug carriers, graphene quantum dots (GQDs), on their transport in tumor-like cellular spheroids. Chirality of GQDs (L/D-GQDs) was achieved by the surface modification of GQDs with L/D-cysteines. As an in-vitro tissue model for drug testing, cellular spheroids were derived from a human hepatoma cell line (i.e., HepG2 cells) using the Hanging-drop method. Our results reveal that the L-GQDs had a 1.7-fold higher apparent diffusion coefficient than the D-GQDs, indicating that the L-GQDs can enhance their transport into tumor-like cellular spheroids. Moreover, when loaded with a common chemotherapy drug, Doxorubicin (DOX), via π-π stacking, L-GQDs are more effective as nanocarriers for drug delivery into solid tumor-like tissue, resulting in 25% higher efficacy for cancerous cellular spheroids than free DOX. Overall, our studies indicated that the chirality of nanocarriers is essential for the design of drug delivery vehicles to enhance the transport of drugs in a cancerous tumor.

4.
J Mater Chem B ; 11(31): 7378-7388, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37431684

ABSTRACT

Tauopathies are a class of neurodegenerative diseases resulting in cognitive dysfunction, executive dysfunction, and motor disturbance. The primary pathological feature of tauopathies is the presence of neurofibrillary tangles in the brain composed of tau protein aggregates. Moreover, tau aggregates can spread from neuron to neuron and lead to the propagation of tau pathology. Although numerous small molecules are known to inhibit tau aggregation and block tau cell-to-cell transmission, it is still challenging to use them for therapeutic applications due to poor specificity and low blood-brain barrier (BBB) penetration. Graphene nanoparticles were previously demonstrated to penetrate the BBB and are amenable to functionalization for targeted delivery. Moreover, these nanoscale biomimetic particles can self-assemble or assemble with various biomolecules including proteins. In this paper, we show that graphene quantum dots (GQDs), as graphene nanoparticles, block the seeding activity of tau fibrils by inhibiting the fibrillization of monomeric tau and triggering the disaggregation of tau filaments. This behavior is attributed to electrostatic and π-π stacking interactions of GQDs with tau. Overall, our studies indicate that GQDs with biomimetic properties can efficiently inhibit and disassemble pathological tau aggregates, and thus block tau transmission, which supports their future developments as a potential treatment for tauopathies.


Subject(s)
Graphite , Quantum Dots , Tauopathies , Humans , Graphite/pharmacology , Graphite/metabolism , Biomimetics , tau Proteins , Tauopathies/metabolism , Tauopathies/pathology , Neurofibrillary Tangles/metabolism , Neurofibrillary Tangles/pathology
5.
ACS Nano ; 17(11): 10191-10205, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37127891

ABSTRACT

As nanoscale extracellular vesicles secreted by cells, small extracellular vesicles (sEVs) have enormous potential as safe and effective vehicles to deliver drugs into lesion locations. Despite promising advances with sEV-based drug delivery systems, there are still challenges to drug loading into sEVs, which hinder the clinical applications of sEVs. Herein, we report an exogenous drug-agnostic chiral graphene quantum dots (GQDs) sEV-loading platform, based on chirality matching with the sEV lipid bilayer. Both hydrophobic and hydrophilic chemical and biological drugs can be functionalized or adsorbed onto GQDs by π-π stacking and van der Waals interactions. By tuning the ligands and GQD size to optimize its chirality, we demonstrate drug loading efficiency of 66.3% and 64.1% for doxorubicin and siRNA, which is significantly higher than other reported sEV loading techniques.


Subject(s)
Extracellular Vesicles , Graphite , Quantum Dots , Quantum Dots/chemistry , Graphite/chemistry , Pharmaceutical Preparations , Drug Delivery Systems
6.
bioRxiv ; 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36711460

ABSTRACT

As nanoscale extracellular vesicles secreted by cells, exosomes have enormous potential as safe and effective vehicles to deliver drugs into lesion locations. Despite promising advances with exosome-based drug delivery systems, there are still challenges to drug loading into exosome, which hinder the clinical applications of exosomes. Herein, we report an exogenous drug-agnostic chiral graphene quantum dots (GQDs) exosome-loading platform, based on chirality matching with the exosome lipid bilayer. Both hydrophobic and hydrophilic chemical and biological drugs can be functionalized or adsorbed onto GQDs by π-π stacking and van der Waals interactions. By tuning the ligands and GQD size to optimize its chirality, we demonstrate drug loading efficiency of 66.3% and 64.1% for Doxorubicin and siRNA, which is significantly higher than other reported exosome loading techniques.

7.
bioRxiv ; 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38187632

ABSTRACT

Exosomes are promising nanocarriers for drug delivery. Yet, it is challenging to apply exosomes in clinical use due to the limited understanding of their physiological functions. While cellular uptake of exosomes is generally known through endocytosis and/or membrane fusion, the mechanisms of origin-dependent cellular uptake and subsequent cargo release of exosomes into recipient cells are still unclear. Herein, we investigated the intricate mechanisms of exosome entry into recipient cells and the intracellular cargo release. In this study, we utilized chiral graphene quantum dots (GQDs) as representatives of exosomal cargo, taking advantage of the superior permeability of chiral GQDs into lipid membranes, as well as their excellent optical properties for tracking analysis. We observed a higher uptake rate of exosomes in their parental recipient cells. However, these exosomes were predominantly entrapped in lysosomes through endocytosis (intraspecies endocytic uptake). On the other hand, in non-parental recipient cells, exosomes exhibited a greater inclination for cellular uptake through membrane fusion, followed by direct cargo release into the cytosol (cross-species direct fusion uptake). We revealed the underlying mechanisms involved in the cellular uptake and the subsequent cargo release of exosomes depending on their cell-of-origin and recipient cell types. This study envisions valuable insights into further advancements in the effective drug delivery using exosomes, as well as a comprehensive understanding of cellular communication, including disease pathogenesis.

8.
ACS Omega ; 6(51): 35514-35522, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34984283

ABSTRACT

Melanin, a widespread pigment found in many taxa, is widely recognized for its high refractive index, ultraviolet (UV) protection, radical quenching ability, metal binding, and many other unique properties. The aforementioned characteristic traits make melanin a potential candidate for biomedical, separation, structural coloration, and space applications. However, the commercially available natural (sepia) and synthetic melanin are very expensive, limiting their use in various applications. Additionally, eumelanin has been the primary focus in most of these studies. In the present study, we demonstrate that melanin can be extracted from the pathogenic black knot fungus Apiosporina morbosa with a yield of ∼10% using the acid-base extraction method. The extracted melanin shows irregular morphology. Chemical characterization using X-ray photoelectron spectroscopy, infrared spectroscopy, and solid-state nuclear magnetic resonance spectroscopy reveals that the melanin derived from black knots is the less explored nitrogen-free allomelanin. Additionally, the extracted melanin shows broadband UV absorption typical of other types of melanin. Because of the wide availability and low cost of black knots and the invasive nature of the fungus, black knots can serve as an alternative green source for obtaining allomelanin at a low cost, which could stimulate its use as an UV light absorber and antioxidant in cosmetics and packaging industries.

SELECTION OF CITATIONS
SEARCH DETAIL
...