Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Gene ; 883: 147635, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37442304

ABSTRACT

Normal floral organ development in rice is necessary for grain formation. Many MADS-box family genes that belong to ABCDE model have been widely implicated in rice flower development. The LAX1 allele encodes a plant-specific basic helix-loop-helix (bHLH) transcription factor, which is the main regulator of axillary meristem formation in rice. However, the molecular mechanisms of LAX1 allele together with MADS-box family genes underlying palea development have not been reported. We found a short palea mutant plant in a population of indica rice variety 9311 treated with cobalt 60. We report the map-based cloning and characterization of lax1-7, identified as a new mutant allele of the LAX1 locus, and the role of its wild-type allele LAX1 in rice palea development. Through complementary experiments, combined with genetic and molecular biological analyses, the function of the LAX1 allele was determined. We showed that LAX1 allele is expressed specifically in young spikelets and encodes a nucleus-localized protein. In vitro and in vivo experiments revealed that the LAX1 protein physically interacts with OsMADS1, OsMADS6 and OsMADS7. The LAX1 allele is pleiotropic for the maintenance of rice palea identity via cooperation with MADS-box genes and other traits, including axillary meristem initiation, days to heading, plant height, panicle length and spikelet fertility.


Subject(s)
Oryza , Oryza/genetics , Oryza/growth & development , Membrane Transport Proteins/genetics , Plant Proteins/genetics , Mutation , Chromosomes, Plant , Alleles , Gene Expression Regulation, Plant
2.
Front Plant Sci ; 14: 1187922, 2023.
Article in English | MEDLINE | ID: mdl-37389300

ABSTRACT

It is well documented that high temperature (HT) severely affects the development of soybean male reproductive organs. However, the molecular mechanism of thermo-tolerance in soybean remains unclear. To explore the candidate genes and regulatory mechanism of soybean response to HT stress and flower development, here, the anthers of two previously identified HT-tolerant (JD21) and HT-sensitive (HD14) varieties were analyzed by RNA-seq. In total, 219 (172 upregulated and 47 downregulated), 660 (405 upregulated and 255 downregulated), and 4,854 (2,662 upregulated and 2,192 downregulated) differentially expressed genes (DEGs) were identified between JD21 anthers treated with HT stress vs. JD21 anthers in the natural field conditions (TJA vs. CJA), HD14 anthers treated with HT stress vs. HD14 anthers in the natural field conditions (THA vs. CHA), and JD21 vs. HD14 anthers treated with HT stress (TJA vs. THA), respectively. The results showed that there were more DEGs upregulated in JD21; this might be the reason why JD21 was more HT-resistant than the HT-sensitive variety HD14. GO annotation and KEGG enriched analysis showed that many DEGs are mainly involved in defense response, response to biological stimuli, auxin-activated signaling pathway, plant hormone signal transduction, MAPK signaling pathway-plant, starch and sucrose metabolism, etc. The conjoint analysis of RNA-seq and previous iTRAQ results found that there were 1, 24, and 54 common DEGs/DAPs showing the same expression pattern and 1, 2, and 13 common DEGs/DAPs showing the opposite pattern between TJA vs. CJA, THA vs. CHA, and TJA vs. THA at the protein and gene level, respectively, among which HSPs, transcription factor, GSTU, and other DEGs/DAPs participated in the response to HT stress and flower development. Notably, the qRT-PCR analysis and physiological index change results coincided with the sequencing results of RNA-seq and iTRAQ. In conclusion, the HT-tolerant cultivar performed better under stress than the HT-sensitive cultivar through modulation of HSP family proteins and transcription factors, and by keeping key metabolic pathways such as plant hormone signal transduction normal. This study provided important data and some key candidate genes to better study the effect and molecular basis of HT on anther in soybean at a transcription and translation level.

3.
Int J Mol Sci ; 23(22)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36430287

ABSTRACT

Soybean (Glycine max) is an important oil crop, but the regulatory mechanisms underlying seed oil accumulation remain unclear. We identified a member of the GmWRI1s transcription factor family, GmWRI1c, that is involved in regulating soybean oil content and nodulation. Overexpression of GmWRI1c in soybean hairy roots increased the expression of genes involved in glycolysis and de novo lipogenesis, the proportion of palmitic acid (16:0), and the number of root nodules. The effect of GmWRI1c in increasing the number of root nodules via regulating the proportion of palmitic acid was confirmed in a recombinant inbred line (RIL) population. GmWRI1c shows abundant sequence diversity and has likely undergone artificial selection during domestication. An association analysis revealed a correlation between seed oil content and five linked natural variations (Hap1/Hap2) in the GmWRI1c promoter region. Natural variations in the GmWRI1c promoter were strongly associated with the GmWRI1c transcript level, with higher GmWRI1c transcript levels in lines carrying GmWRI1cHap1 than in those carrying GmWRI1cHap2. The effects of GmWRI1c alleles on seed oil content were confirmed in natural and RIL populations. We identified a favourable GmWRI1c allele that can be used to breed new varieties with increased seed oil content and nodulation.


Subject(s)
Glycine max , Palmitic Acid , Glycine max/metabolism , Palmitic Acid/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Breeding , Soybean Oil/metabolism
4.
Theor Appl Genet ; 135(1): 321-336, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34657161

ABSTRACT

KEY MESSAGE: SYL3-k allele increases the outcrossing rate of male sterile line and the yield of hybrid F1 seeds via enhancement of endogenous GA4 content in Oryza sativa L. pistils. The change in style length might be an adaptation of rice cultivation from south to north in the northern hemisphere. The style length (SYL) in rice is one of the major factors influencing the stigma exertion, which affects the outcross rate of male sterile line and the yield of hybrid F1 seeds. However, the biological mechanisms underlying SYL elongation remain elusive. Here, we report a map-based cloning and characterisation of the allele qSYL3-k. The qSYL3-k allele encodes a MADS-box family transcription factor, and it is expressed in various rice organs. The qSYL3-k allele increases SYL via the elongation of cell length in the style, which is associated with a higher GA4 content in the pistil. The expression level of OsGA3ox2 in pistils with qSYL3-k alleles is significantly higher than that in pistils with qSYL3-n allele on the same genome background of Nipponbare. The yield of F1 seeds harvested from plants with 7001SSYL3-k alleles was 16% higher than that from plants with 7001SSYL3-n allele. The sequence data at the qSYL3 locus in 136 accessions showed that alleles containing the haplotypes qSYL3AA, qSYL3AG, and qSYL3GA increased SYL, whereas those containing the haplotype qSYL3GG decreased it. The frequency of the haplotype qSYL3GG increases gradually from the south to north in the northern hemisphere. These findings will facilitate improvement in SYL and yield of F1 seeds henceforward.


Subject(s)
Flowers/genetics , MADS Domain Proteins/genetics , Oryza/genetics , Plant Proteins/genetics , Flowers/anatomy & histology , Flowers/metabolism , Gibberellins/metabolism , MADS Domain Proteins/physiology , Oryza/anatomy & histology , Oryza/metabolism , Plant Growth Regulators/metabolism , Plant Proteins/physiology
5.
Healthcare (Basel) ; 9(8)2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34442096

ABSTRACT

Regular physical activity (PA) contributes to health, growth and development in childhood and it is essential for children to achieve appropriate PA levels (PAL). However, most children around the world fail to comply with the recommended PAL requirements. Rope skipping, as a highly accessible, enjoyable, and affordable physical activity for students, has been considered a sustainable afterschool physical activity to promote physical fitness of students by educators. The booming development of smart fitness product design and the advent of exergames have brought new possibilities for physical education and rope skipping: personalized guidance, intuitive and interesting feedback and visualized exercise data analysis-there is much room for optimization. In this study, an intelligent skipping rope and its service system were studied for primary school students (aged 7-12) who started to get involved in this sport. First, user needs, product functions, and system requirement were summarized by conducting observations and user interviews. Then, a prototype of the hardware and software interface were designed based on analysis of user research. Next, a usability test of the interactive prototype was carried out and optimization was finally made based on the feedback of the usability evaluation. The final system design includes combined innovations in software and hardware with the intention to increase children's participation in physical activity and assist them in skipping rope in the right way with proper equipment and programs.

6.
Plant J ; 104(6): 1491-1503, 2020 12.
Article in English | MEDLINE | ID: mdl-33031564

ABSTRACT

Stigma characteristics are important factors affecting the seed yield of hybrid rice per unit area. Natural variation of stigma characteristics has been reported in rice, but the genetic basis for this variation is largely unknown. We performed a genome-wide association study on three stigma characteristics in six environments using 1.3 million single-nucleotide polymorphism (SNPs) characterized in 353 diverse accessions of Oryza sativa. An abundance of phenotypic variation was present in the three stigma characteristics of these collections. We identified four significant SNPs associated with stigma length, 20 SNPs with style length (SYL), and 17 SNPs with the sum of stigma and style length, which were detected repeatedly in more than four environments. Of these SNPs, 28 were novel. We identified two causal gene loci for SYL, OsSYL3 and OsSYL2; OsSYL3 was co-localized with the grain size gene GS3. The SYL of accessions carrying allele OsSYL3AA was significantly longer than that of those carrying allele OsSYL3CC . We also demonstrated that the outcrossing rate of female parents carrying allele OsSYL2AA increased by 5.71% compared with that of the isogenic line carrying allele OsSYL2CC in an F1 hybrid seed production field. The allele frequencies of OsSYL3AA and OsSYL2AA decreased gradually with an increase in latitude in the Northern Hemisphere. Our results should facilitate the improvement in stigma characteristics of parents of hybrid rice.


Subject(s)
Flowers/growth & development , Oryza/genetics , Alleles , Genes, Plant/genetics , Genetics, Population , Genome-Wide Association Study , Linkage Disequilibrium/genetics , Oryza/growth & development , Polymorphism, Single Nucleotide/genetics
7.
Plant Physiol ; 181(3): 1207-1222, 2019 11.
Article in English | MEDLINE | ID: mdl-31519786

ABSTRACT

Hybrid rice (Oryza sativa) has been cultivated commercially for 42 years in China. However, poor grain filling still limits the development of hybrid japonica rice. We report here the map-based cloning and characterization of the GRAIN-FILLING RATE1 (GFR1) gene present at a major-effect quantitative trait locus. We elucidated and confirmed the function of GFR1 via genetic complementation experiments and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing in combination with genetic and molecular biological analyses. In addition, we conducted haplotype association analysis to mine the elite alleles of GFR1 among 117 rice accessions. We observed that GFR1 was constitutively expressed and encoded a membrane-localized protein. The allele of the rice accession Ludao (GFR1 Ludao) improved the grain-filling rate of rice by increasing Rubisco initial activity in the Calvin cycle. Moreover, the increased expression of the cell wall invertase gene OsCIN1 in the near isogenic line NIL-GFR1 Ludao promoted the unloading of Suc during the rice grain-filling stage. A yeast two-hybrid assay indicated that the Rubisco small subunit interacts with GFR1, possibly in the regulation of the rice grain-filling rate. Evaluation of the grain-filling rate and grain yield of F1 plants harboring GFR1 Ludao and the alleles of 20 hybrids widely cultivated commercially confirmed that favorable alleles of GFR1 can be used to further improve the grain-filling rate of hybrid japonica rice.


Subject(s)
Oryza/genetics , Plant Proteins/metabolism , Alleles , Chromosome Mapping , Chromosomes, Plant/genetics , Edible Grain/genetics , Edible Grain/metabolism , Plant Proteins/genetics , Quantitative Trait Loci/genetics , Two-Hybrid System Techniques
8.
BMC Genet ; 20(1): 34, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30890139

ABSTRACT

BACKGROUND: Improving the gelatinization temperature (GT), gel consistency (GC) and amylose content (AC) for parental grain eating and cooking qualities (ECQs) are key factors for enhancing average grain ECQs for hybrid japonica rice. RESULTS: In this study, a genome-wide association mapping (GWAS) for ECQs was performed on a selected sample of 462 rice accessions in 5 environments using 262 simple sequence repeat markers. We identified 10 loci and 27 favorable alleles for GT, GC and AC, and some of these loci were overlapped with starch synthesis-related genes. Four SSR loci for the GT trait were distributed on chromosomes 3, 5, 8, and 9, of which two SSR loci were novel. Two SSR loci associated with the GC trait were distributed on chromosomes 3 and 6, although only one SSR locus was novel. Four SSR loci associated with the AC trait were distributed on chromosomes 3, 6, 10, and 11, of which three SSR loci were novel. The novel loci RM6712 and RM6327 were simultaneously identified in more than 2 environments and were potentially reliable QTLs for ECQs, with 15 parental combinations being predicted. These QTLs and parental combinations should be used in molecular breeding to improve japonica rice average ECQs. CONCLUSIONS: Among the 10 SSR loci associated with GT, GC and AC for grain ECQs detected in 27 favorable alleles, the favorable allele RM3600-90bp on chromosome 9 could significantly reduce GT, RM5753-115bp on chromosome 6 could significantly increase GC, and RM6327-230bp on chromosome 11 could significantly reduce AC in hybrid japonica rice mixed rice samples.


Subject(s)
Alleles , Amylose/metabolism , Chromosome Mapping , Oryza/genetics , Oryza/metabolism , Temperature , Gels , Genetic Markers/genetics , Genomics , Microsatellite Repeats/genetics , Phenotype , Quantitative Trait Loci/genetics
9.
Planta ; 248(1): 155-169, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29637263

ABSTRACT

MAIN CONCLUSION: Fourteen new quantitative trait loci (QTLs) and ten favorable alleles were identified for lodging resistance traits in a natural population of rice. Parental combinations were designed to improve lodging resistance. Lodging is one of the most critical constraints to rice yield, and therefore, mining favorable alleles for lodging resistance traits is imperative for the advancement of cultivated rice and selection for market demand. This investigation was performed on a selected sample of 521 rice cultivars using 262 SSR markers in 2016 and 2017. Lodging resistance traits were evaluated by plant height (PH), stem length (SL), stem diameter (SD), anti-thrust per stem (AT/S), and stem index (SI), with AT/S, used as the lodging resistance index. A genome-wide association map was generated by combining phenotypic and genotypic data. Eight subpopulations were found by structure software, and the linkage disequilibrium (LD) ranged from 30 to 80 cM. Identification of 68 marker-trait associations (MTAs) linking in 64 SSR markers for five traits was done. QTL were detected, including 15 for PH, 14 for SL, 14 for SD, 7 for AT/S, and 18 for SI. A number of favorable alleles were also discovered, including 22, 24, 19, 12, and 28 alleles for PH, SL, SD, AT/S, and SI, respectively. These favorable alleles might be used to design parental combinations, and the predictable results found by relieving the favorable alleles per QTL. The accessions containing favorable alleles for lodging resistant traits mined in this study could be useful for breeding superior rice cultivars.


Subject(s)
Alleles , Disease Resistance/genetics , Oryza/genetics , Quantitative Trait Loci/genetics , Data Mining , Genetic Association Studies , Genetic Markers/genetics , Genetic Variation/genetics , Linkage Disequilibrium/genetics , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...