Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 12: 951444, 2022.
Article in English | MEDLINE | ID: mdl-36185304

ABSTRACT

Background: Influencing factors varied among gastric cancer (GC) for different differentiation grades which affect the prognosis accordingly. This study aimed to develop a nomogram to effectively identify the overall survival (OS). Methods: Totally, 9,568 patients with GC were obtained from the SEER database as the training cohort and internal validation cohort. We then retrospectively enrolled patients diagnosed with GC to construct the external validation cohort from the First Affiliated Hospital of Anhui Medical University. The prognostic factors were integrated into the multivariate Cox regression to construct a nomogram. To test the accuracy of the model, we used the calibration curves, receiver operating characteristics (ROC) curves, C-index, and decision curve analysis (DCA). Results: Race chemotherapy, tumor size, and other four factors were significantly associated with the prognosis of Grade III GC Patients. On this basis, we developed a nomogram. The discrimination of the nomogram revealed good prognostic accuracy The results of the area under the curve (AUC) calculated by ROC for five-year survival were 0.828 and 0.758 in the training set and external validation cohort, higher than that of the TNM staging system. The calibration plot revealed that the estimated risk was close to the actual risk. DCA also suggested an excellent predictive value of the nomogram. Similar results were obtained in Grade-I and Grade-II GC patients. Conclusions: The nomogram developed in this study and other findings could help individualize the treatment of GC patients and assist clinicians in their shared decision-making with patients.

2.
Bioengineered ; 13(3): 6719-6728, 2022 03.
Article in English | MEDLINE | ID: mdl-35245979

ABSTRACT

Bile acids, the main organic solutes in bile, have been established to play an important role at physiological concentrations in gastrointestinal metabolism. However, under pathological conditions, such as cholestatic disease, cholestasis can damage hepatocytes/biliary epithelial cells leading to apoptosis or necrosis. Clinically, pancreatic head cancer usually presents with obstructive jaundice and increased serum bile acid levels, suggesting that pancreatic cancer is intricately correlated with a high bile acid environment in the human body. An increasing body of evidence suggests that bile acids are toxic to normal human and colon cancer cells. Nonetheless, the effect of bile acids on the occurrence and development of pancreatic cancer remains a matter of debate. In the present study, to explore the direct effects of high serum concentrations of bile acids on pancreatic cancer and the possible related mechanisms, human pancreatic cancer (PANC-1) cells were subject to different concentrations of bile acid mixtures to assess cell viability and the migration and invasion ability. Besides, we found that a high bile acid environment could inhibit the proliferation and migration of pancreatic cancer cells through ROS(Reactive oxygen species) induction and the EMT(epithelial-mesenchymal transition) pathway, thereby promoting the apoptosis of pancreatic cancer cells.Abbreviations BAs: Bile Acids; EMT: epithelial-mesenchymal transition; FBS: fatal bovine serum;CCK-8: Cell-Counting-Kit-8; ROS: reactive oxygen species; CA: cholic acid; CDCA: chenodeoxycholic acid; GCDCA: Glycochenodeoxycholic acid; PVDF: Poly vinylidene fluoride.


Subject(s)
Cholestasis , Pancreatic Neoplasms , Apoptosis , Bile Acids and Salts/pharmacology , Chenodeoxycholic Acid/pharmacology , Cholestasis/pathology , Humans , Reactive Oxygen Species/metabolism , Pancreatic Neoplasms
3.
Cancer Cell Int ; 19: 344, 2019.
Article in English | MEDLINE | ID: mdl-31889896

ABSTRACT

BACKGROUND: Gastric cancer (GC) is one of the most common gastrointestinal malignancies worldwide. Emerging evidence indicates that hyperglycemia promotes tumor progression, especially the processes of migration, invasion and epithelial-mesenchymal transition (EMT). However, the underlying mechanisms of GC remain unclear. METHOD: Data from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases were used to detect the expression of glycolysis-related enzymes and EMT-related transcription factors. Small interfering RNA (siRNA) transfection was performed to decrease ENO1 expression. Immunohistochemistry (IHC), Western blot and qRT-PCR analyses were used to measure gene expression at the protein or mRNA level. CCK-8, wound-healing and Transwell assays were used to assess cell proliferation, migration and invasion. RESULTS: Among the glycolysis-related genes, ENO1 was the most significantly upregulated in GC, and its overexpression was correlated with poor prognosis. Hyperglycemia enhanced GC cell proliferation, migration and invasion. ENO1 expression was also upregulated with increasing glucose concentrations. Moreover, decreased ENO1 expression partially reversed the effect of high glucose on the GC malignant phenotype. Snail-induced EMT was promoted by hyperglycemia, and suppressed by ENO1 silencing. Moreover, ENO1 knockdown inhibited the activation of transforming growth factor ß (TGF-ß) signaling pathway in GC. CONCLUSIONS: Our results indicated that hyperglycemia induced ENO1 expression to trigger Snail-induced EMT via the TGF-ß/Smad signaling pathway in GC.

SELECTION OF CITATIONS
SEARCH DETAIL
...