Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38674501

ABSTRACT

High temperatures have adverse effects on the yield and quality of vegetables. Bok choy, a popular vegetable, shows varying resistance to heat. However, the mechanism underlying the thermotolerance of bok choy remains unclear. In this study, 26 bok choy varieties were identified in screening as being heat-resistant at the seedling stage; at 43 °C, it was possible to observe obvious heat damage in different bok choy varieties. The physiological and biochemical reactions of a heat-tolerant cultivar, Jinmei (J7), and a heat-sensitive cultivar, Sanyueman (S16), were analyzed in terms of the growth index, peroxide, and photosynthetic parameters. The results show that Jinmei has lower relative conductivity, lower peroxide content, and higher total antioxidant capacity after heat stress. We performed transcriptome analysis of the two bok choy varieties under heat stress and normal temperatures. Under heat stress, some key genes involved in sulfur metabolism, glutathione metabolism, and the ribosome pathway were found to be significantly upregulated in the heat-tolerant cultivar. The key genes of each pathway were screened according to their fold-change values. In terms of sulfur metabolism, genes related to protease activity were significantly upregulated. Glutathione synthetase (GSH2) in the glutathione metabolism pathway and the L3e, L23, and S19 genes in the ribosomal pathway were significantly upregulated in heat-stressed cultivars. These results suggest that the total antioxidant capacity and heat injury repair capacity are higher in Jinmei than in the heat-sensitive variety, which might be related to the specific upregulation of genes in certain metabolic pathways after heat stress.

2.
Materials (Basel) ; 16(8)2023 Apr 16.
Article in English | MEDLINE | ID: mdl-37109965

ABSTRACT

The service environment of OCTG (Oil Country Tubular Goods) in oil and gas fields is becoming more and more severe due to the strong affinity between ions or atoms of corrosive species coming from solutions and metal ions or atoms on metals. While it is difficult for traditional technologies to accurately analyze the corrosion characteristics of OCTG in CO2-H2S-Cl- systems, it is necessary to study the corrosion-resistant behavior of TC4 (Ti-6Al-4V) alloys based on an atomic or molecular scale. In this paper, the thermodynamic characteristics of the TiO2(100) surface of TC4 alloys in the CO2-H2S-Cl- system were simulated and analyzed by first principles, and the corrosion electrochemical technologies were used to verify the simulation results. The results indicated that all of the best adsorption positions of corrosive ions (Cl-, HS-, S2-, HCO3-, and CO32-) on TiO2(100) surfaces were bridge sites. A forceful charge interaction existed between Cl, S, and O atoms in Cl-, HS-, S2-, HCO3-, CO32-, and Ti atoms in TiO2(100) surfaces after adsorption in a stable state. The charge was transferred from near Ti atoms in TiO2 to near Cl, S, and O atoms in Cl-, HS-, S2-, HCO3-, and CO32-. Electronic orbital hybridization occurred between 3p5 of Cl, 3p4 of S, 2p4 of O, and 3d2 of Ti, which was chemical adsorption. The effect strength of five corrosive ions on the stability of TiO2 passivation film was S2- > CO32- > Cl- > HS- > HCO3-. In addition, the corrosion current density of TC4 alloy in different solutions containing saturated CO2 was as follows: NaCl + Na2S + Na2CO3 > NaCl + Na2S > NaCl + Na2CO3 > NaCl. At the same time, the trends of Rs (solution transfer resistance), Rct (charge transfer resistance), and Rc (ion adsorption double layer resistance) were opposite to the corrosion current density. The corrosion resistance of TiO2 passivation film to corrosive species was weakened owing to the synergistic effect of corrosive species. Severe corrosion resulted, especially pitting corrosion, which further proved the simulation results mentioned above. Thus, this outcome provides the theoretical support to reveal the corrosion resistance mechanism of OCTG and to develop novel corrosion inhibitors in CO2-H2S-Cl- environments.

3.
Physiol Plant ; 175(2): e13908, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37022777

ABSTRACT

Wucai (Brassica campestris L. ssp. chinensis var. rosularis Tsen) belongs to the Brassica genus of the Cruciferae family, and its leaf curl is a typical feature that distinguishes Wucai from other nonheading cabbage subspecies. Our previous research found that plant hormones were involved in the development of the leaf curl in Wucai. However, the molecular mechanisms and the hormones regulating the formation of leaf curl in Wucai have not yet been reported. This study aimed to understand the molecular functions related to hormone metabolism during the formation of leaf curl in Wucai. A total of 386 differentially expressed genes (DEGs) were identified by transcriptome sequencing of two different morphological parts of the same leaf of Wucai germplasm W7-2, and 50 DEGs were found to be related to plant hormones, which were mainly involved in the auxin signal transduction pathway. Then, we measured the content of endogenous hormones in two different forms of the same leaf of Wucai germplasm W7-2. A total of 17 hormones with differential content were identified, including auxin, cytokinins, jasmonic acids, salicylic acids, and abscisic acid. And we found that treatment with auxin transport inhibitor N-1-naphthylphthalamic acid can affect the leaf curl phenotype of Wucai and pak choi (Brassica rapa L. subsp. Chinensis). These results indicated that plant hormones, especially auxin, are involved in developing the leaf curl of Wucai. Our findings provide a potentially valuable reference for future research on the development of leaf curls.


Subject(s)
Brassica , Brassica/genetics , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Hormones/metabolism , Gene Expression Regulation, Plant
4.
Genes (Basel) ; 14(2)2023 02 05.
Article in English | MEDLINE | ID: mdl-36833342

ABSTRACT

Late embryogenesis abundant (LEA) proteins are important developmental proteins in the response of plants to abiotic stress. In our previous study, BcLEA73 was differentially expressed under low-temperature stress. Herein, we combined bioinformatics analysis, subcellular localization, expression assays, and stress experiments (including salt, drought, and osmotic stress) to identify and analyze the BcLEA gene family. Gene cloning and functional analysis of BcLEA73 were performed in tobacco and Arabidopsis. Based on the sequence homology and the available conservative motif, 82 BrLEA gene family members were identified and were divided into eight subfamilies in the genome-wide database of Chinese cabbage. The analysis showed that the BrLEA73 gene was located on chromosome A09 and belonged to the LEA_6 subfamily. Quantitative real-time PCR analysis indicated that the BcLEA genes were differentially expressed to varying degrees in the roots, stems, leaves, and petioles of Wucai. The overexpressed BcLEA73 transgenic plants exhibited no significant differences in root length and seed germination rates compared to the wild-type (WT) plants under control conditions. Under salt and osmotic stress treatment, the root length and seed germination rates of the BcLEA73-OE strain were significantly greater than those of WT plants. Under salt stress, the total antioxidant capacity (T-AOC) of the BcLEA73-OE lines increased significantly, and the relative conductivity, (REL), hydrogen peroxide (H2O2) content, and superoxide anion (O2-) production rate decreased significantly. Under drought treatment, the survival rate of the BcLEA73-OE lines was significantly higher than that of WT plants. These results showed that the BcLEA73 gene of Wucai functions in enhancing the tolerance of plants to salt, drought, and osmotic stress. This study provides a theoretical basis to explore the relevant functions of the BcLEA gene family members of Wucai.


Subject(s)
Arabidopsis , Brassica , Brassica/metabolism , Plant Proteins/genetics , Hydrogen Peroxide/metabolism , Stress, Physiological/genetics , Salt Stress , Arabidopsis/genetics
5.
Int J Mol Sci ; 23(20)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36293299

ABSTRACT

In plants, the accumulation of carotenoids can maintain the balance of the photosystem and improve crop nutritional quality. Therefore, the molecular mechanisms underlying carotenoid synthesis and accumulation should be further explored. In this study, carotenoid accumulation differed significantly among parental Brassica rapa. Genetic analysis was carried out using the golden inner leaf '1900264' line and the light-yellow inner leaf '1900262' line, showing that the golden inner leaf phenotype was controlled by a single dominant gene. Using bulked-segregant analysis sequencing, BraA09g007080.3C encoding the ORANGE protein was selected as a candidate gene. Sequence alignment revealed that a 4.67 kb long terminal repeat insertion in the third exon of the BrGOLDEN resulted in three alternatively spliced transcripts. The spatiotemporal expression results indicated that BrGOLDEN might regulate the expression levels of carotenoid-synthesis-related genes. After transforming BrGOLDEN into Arabidopsis thaliana, the seed-derived callus showed that BrGOLDENIns and BrGOLDENDel lines presented a yellow color and the BrGOLDENLdel line presented a transparent phenotype. In addition, using the yeast two-hybrid assay, BrGOLDENIns, BrGOLDENLdel, and Brgoldenwt exhibited strong interactions with BrPSY1, but BrGOLDENDel did not interact with BrPSY1 in the split-ubiquitin membrane system. In the secondary and 3D structure analysis, BrGOLDENDel was shown to have lost the PNFPSFIPFLPPL sequences at the 125 amino acid position, which resulted in the α-helices of BrGOLDENDel being disrupted, restricting the formation of the 3D structure and affecting the functions of the protein. These findings may provide new insights into the regulation of carotenoid synthesis in B. rapa.


Subject(s)
Arabidopsis , Brassica rapa , Brassica rapa/genetics , Brassica rapa/metabolism , Genes, Dominant , Carotenoids/metabolism , Arabidopsis/genetics , Amino Acids/genetics , Ubiquitins/genetics
6.
Environ Monit Assess ; 194(10): 763, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-36087222

ABSTRACT

Metal(loid)s in cultivated land become an important issue with respect to human health and food security. However, it remains challenging to identify metal(loid) pollution characteristics due to varying environmental settings at the local scale. In this study, the geographic information system and categorical regression model were applied to analyze the spatial distribution and influencing factors of metal(loid)s in cultivated land using 90 sampling sites in Xianjia Town, Southeast China. The pollution levels and ecological risks of five metal(loid)s-Cd, Pb, Cr, Hg, and As-were further investigated using the single pollution index (PI), Nemerow comprehensive pollution index (PN), and potential ecological risk index (RI). The results indicate that the cultivated soils were affected by Cd and Pb pollution, with 3.06 and 6.30 times higher average concentrations than the soil environment background values (SEBV) of Fujian Province, respectively. Based on the CATREG model, crop type had a great impact on Pb and Hg contents. Cr contents were higher in rice fields, while Hg and As concentrations were higher in turmeric fields. Cr and Hg contents under five crop types did not exceed the SEBV of Fujian Province. The average Pb contents in rice fields were 1.25 and the Cd contents in vegetable fields 1.09 times higher than the average value in sampled soils. According to the RI, 63.66% of the sampling points were at medium to high risk. These findings enhance our understanding of the metal(loid)s pollution characteristics and their ecological risks in cultivated land at the local scale.


Subject(s)
Mercury , Metals, Heavy , Oryza , Soil Pollutants , Cadmium , China , Environmental Monitoring , Humans , Lead , Metals, Heavy/analysis , Soil , Soil Pollutants/analysis
7.
BMC Genomics ; 23(1): 598, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35978316

ABSTRACT

Dehydration responsive element binding protein (DREB) is a significant transcription factor class known to be implicated in abiotic stresses. In this study, we systematically conducted a genome-wide identification and expression analysis of the DREB gene family, including gene structures, evolutionary relationships, chromosome distribution, conserved domains, and expression patterns. A total of 65 DREB family gene members were identified in Chinese cabbage (Brassica rapa L.) and were classified into five subgroups based on phylogenetic analysis. Through analysis of the conserved domains of BrDREB family genes, only one exon existed in the gene structure. Through the analysis of cis-acting elements, these genes were mainly involved in hormone regulation and adversity stress. In order to identify the function of BrDREB2B, overexpressed transgenic Arabidopsis was constructed. After different stress treatments, the germination rate, root growth, survival rate, and various plant physiological indicators were measured. The results showed that transgenic Arabidopsis thaliana plants overexpressing BrDREB2B exhibited enhanced tolerance to salt, heat and drought stresses. Taken together, our results are the first to report the BrDREB2B gene response to drought and heat stresses in Chinese cabbage and provide a basis for further studies to determine the function of BrDREBs in response to abiotic stresses.


Subject(s)
Arabidopsis , Brassica , Arabidopsis/metabolism , Brassica/genetics , Brassica/metabolism , Gene Expression Regulation, Plant , Genome, Plant , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics
8.
Materials (Basel) ; 15(13)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35806506

ABSTRACT

Titanium alloys have now become the first choice of tubing material used in the harsh oil- and gas-exploitation environment, while the interaction of force and medium is a serious threat to the safety and reliability of titanium alloy in service. In this paper, different stresses were applied to TC4 titanium alloy by four-point bending stress fixture, and the corrosion behavior of TC4 titanium alloy was studied by high-temperature and high-pressure simulation experiments and electrochemical techniques, and the microscopic morphologies and chemical composition of the surface film layer on the specimen were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), to reveal the corrosion-resistance mechanism of TC4 titanium alloy under different stress-loading conditions. The results showed that the pits appeared on the specimens loaded with elastic stress, but the degree of pitting corrosion was still lighter, and the surface film layer showed n-type semiconductor properties with cation selective permeability. While the pits on the specimens loaded with plastic stress were deeper and wider in size, and the semiconductor type of the surface film layer changed to p-type, it was easier for anions such as Cl- and CO32- to adsorb on, destroy, and pass through the protective film and then to contact with the matrix, resulting in a decrease in corrosion resistance of TC4 titanium alloy.

9.
Sci Rep ; 12(1): 11822, 2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35821054

ABSTRACT

2205 duplex stainless steel (DSS) has good corrosion resistance due to its typical duplex organization, but the increasingly harsh CO2-containing oil and gas environment leads to different degrees of corrosion, especially pitting corrosion, which seriously threatens the safety and reliability of oil and gas development. In this paper, the effect of temperature on the corrosion behavior of 2205 DSS in a simulated solution containing 100 g/L Cl- and saturated CO2 was investigated with immersion tests and electrochemical tests and combined with characterization techniques such as laser confocal microscopy and X-ray photoelectron spectroscopy. The results show that the average critical pitting temperature of 2205 DSS was 66.9 °C. When the temperature was higher than 66.9 °C, the pitting breakdown potential, passivation interval, and self-corrosion potential decreased, while the dimensional passivation current density increased, and the pitting sensitivity was enhanced. With a further increase in temperature, the capacitive arc radius of 2205 DSS decreased, the film resistance and charge transfer resistance gradually decreased, the carrier density of the donor and acceptor in the product film layer with n + p bipolar characteristics also increased and the inner layer of the film with Cr oxide content decreased, while the outer layer with Fe oxide content increased, the dissolution of the film layer increased, the stability decreased, and the number and pore size of pits increased.

10.
PeerJ ; 10: e13427, 2022.
Article in English | MEDLINE | ID: mdl-35637719

ABSTRACT

High temperatures have a serious impact on the quality and yield of cold-loving Chinese cabbage, which has evolved to have a unique set of stress mechanisms. To explore the relationship between these mechanisms and the heat-tolerance of Chinese cabbage, the physiological indicators of the heat-tolerant '268' line and heat-sensitive '334' line were measured. Under heat stress, the proline (Pro), soluble sugar (SS), and superoxide dismutase (SOD) indexes of the '268' line increased significantly. When additionally using transcriptome analysis, we found that the identified 3,360 DEGs were abundantly enriched in many metabolic pathways including 'plant hormone signal transduction', 'carbon metabolism', and 'glycolysis/gluconeogenesis'. Dynamic gene expression patterns showed that HKL1 in Cluster 15 may be a key factor in the regulation of sugar homeostasis. The interaction network screened four ABA-related genes in Cluster 15, suggesting that high temperatures lead to changes in hormonal signaling, especially an increase in ABA signaling. Compared with the '334' line, the expressions of Prx50, Prx52, Prx54, SOD1, and SOD2 in the '268' line were significantly upregulated, and these genes were actively involved in the reactive oxygen species (ROS) scavenging process. In summary, our results revealed the relationship between plant heat tolerance, physiology, and biochemistry and may also provide ideas for the future development of high-quality and heat-tolerant Chinese cabbage germplasm resources.


Subject(s)
Brassica rapa , Brassica , Brassica rapa/genetics , Transcriptome/genetics , Brassica/genetics , Heat-Shock Response/genetics , Gene Expression Profiling
11.
BMC Genomics ; 23(1): 137, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35168556

ABSTRACT

BACKGROUND: Wucai suffers from low temperature during the growth period, resulting in a decline in yield and poor quality. But the molecular mechanisms of cold tolerance in wucai are still unclear. RESULTS: According to the phenotypes and physiological indexes, we screened out the cold-tolerant genotype "W18" (named CT) and cold-sensitive genotype "Sw-1" (named CS) in six wucai genotypes. We performed transcriptomic analysis using seedling leaves after 24 h of cold treatment. A total of 3536 and 3887 differentially expressed genes (DEGs) were identified between the low temperature (LT) and control (NT) comparative transcriptome in CT and CS, respectively, with 1690 DEGs specific to CT. The gene ontology (GO) analysis showed that the response to cadmium ion (GO:0,046,686), response to jasmonic acid (GO:0,009,753), and response to wounding (GO:0,009,611) were enriched in CT (LT vs NT). The DEGs were enriched in starch and sucrose metabolism and glutathione metabolism in both groups, and α-linolenic acid metabolism was enriched only in CT (LT vs NT). DEGs in these processes, including glutathione S-transferases (GSTs), 13S lipoxygenase (LOX), and jasmonate ZIM-domain (JAZ), as well as transcription factors (TFs), such as the ethylene-responsive transcription factor 53 (ERF53), basic helix-loop-helix 92 (bHLH92), WRKY53, and WRKY54.We hypothesize that these genes play important roles in the response to cold stress in this species. CONCLUSIONS: Our data for wucai is consistent with previous studies that suggest starch and sucrose metabolism increased the content of osmotic substances, and the glutathione metabolism pathway enhance the active oxygen scavenging. These two pathways may participated in response to cold stress. In addition, the activation of α-linolenic acid metabolism may promote the synthesis of methyl jasmonate (MeJA), which might also play a role in the cold tolerance of wucai.


Subject(s)
Brassica , Cold-Shock Response , Brassica/genetics , Cold Temperature , Cold-Shock Response/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Transcriptome
12.
Materials (Basel) ; 15(3)2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35161138

ABSTRACT

The working environment for tubing in oil and gas fields is becoming more and more serious due to the exploration of unconventional oil and gas resources, leading to the increasing need for a protective internal coating to be used in tubing. Therefore, a new mica-graphene/epoxy composite coating with different graphene contents (0.0, 0.2, 0.5, 0.7, and 1.0 wt.%) was prepared to improve the tubing resistance to a corrosive medium, an autoclave was used to simulate the working environment, and an electrochemical workstation assisted by three-electrodes was used to study the electrochemical characteristics of the coating. The results showed that the addition of a certain amount of graphene into the mica/epoxy coating significantly improved the corrosion resistance of the composite coating, and when the graphene content increased, the corrosion resistance of the mica/epoxy coating first increased and then decreased when the corrosion current density of a 35 wt.% 800# mica/epoxy coating with a 0.7 wt.% graphene content was the lowest (7.11 × 10-13 A·cm-2), the corrosion potential was the highest (292 mV), the polarization resistance was the largest (3.463 × 109 Ω·cm2), and the corrosion resistance was improved by 89.3% compared to the coating without graphene. Furthermore, the adhesion of the coating with 0.7 wt.% graphene was also the largest (8.81 MPa, increased by 3.4%) and had the smallest diffusion coefficient (1.566 × 107 cm2·s-1, decreased by 76.1%), and the thermal stability improved by 18.6%. Finally, the corrosion resistance mechanism of the composite coating with different graphene contents at different soaking times was revealed based on the electrochemistry and morphology characteristics other than water absorption and contact angle.

13.
J Proteomics ; 254: 104475, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35007766

ABSTRACT

A spontaneous male-sterile mutant ms01 was discovered from the excellent high-generation inbred line 'hx12-6-3' in wucai. Compared with wild-type 'hx12-6-3', ms01 displayed complete male sterility with degenerated stamens and no pollen. In this study, cytological observation revealed that the tapetum of the anthers of ms01 had degraded in advance, and microspore development had stagnated in the mononuclear stage, ultimately resulting in completely aborted pollen. Genetic analysis indicated that the sterility of ms01 was controlled by a single recessive nuclear gene. In the differential proteomic analysis of 'hx12-6-3' and ms01 flower buds using a tandem mass tags-based approach, a comparison of two stages (stage a and stage e) revealed 1272 differentially abundant proteins (DAPs). The abnormal variation of the anther cuticle, pollen coat, and sporopollenin production were effected by lipid metabolism and phenylpropanoid biosynthesis in the mutant ms01. Further analysis elucidated that pollen development was associated with amino acid metabolism, protein synthesis and degradation, carbohydrate metabolism, flavonoid biosynthesis and glutathione metabolism. These results provide novel insights into the molecular mechanism of GMS (genic male sterility) in wucai. SIGNIFICANCE: ms01, as the first indentified spontaneous male-sterile mutant in wucai, plays a significant role in the initial study of GMS (genic male sterility). In our study, the key DAPs related to anther and pollen development were obtained by TMT-based comparative proteomic analysis. We found that the abnormal accumulation of H2O2 might induce premature degradation of the tapetum, causing anther metabolism disorder and pollen abortion. This process involved multiple DAPs and formed a complex regulatory network that generated a series of physiological metabolic alterations, ultimately leading to male sterility. Our results provide a theoretical foundation for further research on the complex anther and pollen development process.


Subject(s)
Brassica , Infertility , Biopolymers , Brassica/genetics , Carotenoids , Flowers/genetics , Flowers/metabolism , Gene Expression Regulation, Plant , Hydrogen Peroxide/metabolism , Infertility/metabolism , Plant Infertility/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen/genetics , Pollen/metabolism , Proteomics
14.
Infect Immun ; 90(1): e0035221, 2022 01 25.
Article in English | MEDLINE | ID: mdl-34694917

ABSTRACT

Pneumococcal disease is a serious public health problem worldwide and an important cause of morbidity and mortality among children and adults in developing countries. Although vaccination is among the most effective approaches to prevent and control pneumococcal diseases, approved vaccines have limited protective effects. We developed a pneumococcal protein-polysaccharide conjugate vaccine that is mediated by the noncovalent interaction between biotin and streptavidin. Biotinylated type IV capsular polysaccharide was incubated with a fusion protein containing core streptavidin and Streptococcus pneumoniae virulence protein and relied on the noncovalent interaction between biotin and streptavidin to prepare the protein-polysaccharide conjugate vaccine. Analysis of vaccine efficacy revealed that mice immunized with the protein-polysaccharide conjugate vaccine produced antibodies with high potency against virulence proteins and polysaccharide antigens and were able to induce Th1 and Th17 responses. The antibodies identified using an opsonophagocytic assay were capable of activating the complement system and promoting pathogen elimination by phagocytes. Additionally, mice immunized with the protein-polysaccharide conjugate vaccine and then infected with a lethal dose of Streptococcus pneumoniae demonstrated induced protective immunity. The data indicated that the pneumococcal protein-polysaccharide (biotin-streptavidin) conjugate vaccine demonstrated broad-spectrum activity applicable to a wide range of people and ease of direct coupling between protein and polysaccharide. These findings provide further evidence for the application of biotin-streptavidin in S. pneumoniae vaccines.


Subject(s)
Biotin , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/immunology , Streptavidin , Streptococcus pneumoniae/immunology , Vaccines, Conjugate/immunology , Antibodies, Bacterial/immunology , Antigens, Bacterial/immunology , Chromatography, High Pressure Liquid , Humans , Immunity, Cellular , Immunity, Humoral , Immunization , Immunogenicity, Vaccine , Spectrum Analysis , Vaccine Development
15.
Soft Robot ; 9(3): 562-576, 2022 06.
Article in English | MEDLINE | ID: mdl-34166097

ABSTRACT

Robotic joints are fundamental components in artificial graspers and manipulators, and they are designed to achieve high dexterity to carry out various tasks. Traditional robotic hands are often driven by rigid joints, such as tendons and electric motors, resulting in bulky and complex designs. Soft robotics, composed of flexible and compliant materials, offers promising solutions to mimic the human hands and handle delicate objects safely. In this article, we propose a simple yet effective V-shape pneumatic torsional actuator (V-PTA) as the building blocks of soft grasper and manipulators. The proposed actuator is capable of producing large angular changes and twisting torque, responding fast to pneumatic changes, and scaling to appropriate dimensions easily. Because the design is generic and modular in nature, these lightweight actuators could also be assembled to form a variety of patterns of structures to suit the needs of individual tasks. We further fabricated robotic graspers and manipulators based on multiple V-PTA and demonstrated that our design could offer solutions to execute daily laboratory operations that interact with small and irregular components. Experimental data confirmed that the V-PTA building block structure could potentially pave the path forward for miniature robotic automation in laboratory or industrial settings.


Subject(s)
Robotics , Equipment Design , Humans , Robotics/methods , Torque
16.
BMC Genomics ; 22(1): 654, 2021 Sep 11.
Article in English | MEDLINE | ID: mdl-34511073

ABSTRACT

BACKGROUND: The discovery of male sterile materials is of great significance for the development of plant fertility research. Wucai (Brassica campestris L. ssp. chinensis var. rosularis Tsen) is a variety of non-heading Chinese cabbage. There are few studies on the male sterility of wucai, and the mechanism of male sterility is not clear. In this study, the male sterile mutant MS7-2 and the wild-type fertile plant MF7-2 were studied. RESULTS: Phenotypic characteristics and cytological analysis showed that MS7-2 abortion occurred at the tetrad period. The content of related sugars in the flower buds of MS7-2 was significantly lower than that of MF7-2, and a large amount of reactive oxygen species (ROS) was accumulated. Through transcriptome sequencing of MS7-2 and MF7-2 flower buds at three different developmental stages (a-c), 2865, 3847, and 4981 differentially expressed genes were identified in MS7-2 at the flower bud development stage, stage c, and stage e, respectively, compared with MF7-2. Many of these genes were enriched in carbohydrate metabolism, phenylpropanoid metabolism, and oxidative phosphorylation, and most of them were down-regulated in MS7-2. The down-regulation of genes involved in carbohydrate and secondary metabolite synthesis as well as the accumulation of ROS in MS7-2 led to pollen abortion in MS7-2. CONCLUSIONS: This study helps elucidate the mechanism of anther abortion in wucai, providing a basis for further research on the molecular regulatory mechanisms of male sterility and the screening and cloning of key genes in wucai.


Subject(s)
Brassica , Brassica/genetics , Flowers/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Infertility/genetics , Plant Proteins/genetics , Transcriptome
17.
BMC Plant Biol ; 21(1): 438, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34583634

ABSTRACT

BACKGROUND: Chlorophyll (Chl) is a vital photosynthetic pigment involved in capturing light energy and energy conversion. In this study, the color conversion of inner-leaves from green to yellow in the new wucai (Brassica campestris L.) cultivar W7-2 was detected under low temperature. The W7-2 displayed a normal green leaf phenotype at the seedling stage, but the inner leaves gradually turned yellow when the temperature was decreased to 10 °C/2 °C (day/night), This study facilitates us to understand the physiological and molecular mechanisms underlying leaf color changes in response to low temperature. RESULTS: A comparative leaf transcriptome analysis of W7-2 under low temperature treatment was performed on three stages (before, during and after leaf color change) with leaves that did not change color under normal temperature at the same period as a control. A total of 67,826 differentially expressed genes (DEGs) were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) analysis revealed that the DEGs were mainly enriched in porphyrin and Chl metabolism, carotenoids metabolism, photosynthesis, and circadian rhythm. In the porphyrin and chlorophyll metabolic pathways, the expression of several genes was reduced [i.e. magnesium chelatase subunit H (CHLH)] under low temperature. Almost all genes [i.e. phytoene synthase (PSY)] in the carotenoids (Car) biosynthesis pathway were downregulated under low temperature. The genes associated with photosynthesis [i.e. photosystem II oxygen-evolving enhancer protein 1 (PsbO)] were also downregulated under LT. Our study also showed that elongated hypocotyl5 (HY5), which participates in circadian rhythm, and the metabolism of Chl and Car, is responsible for the regulation of leaf color change and cold tolerance in W7-2. CONCLUSIONS: The color of inner-leaves was changed from green to yellow under low temperature in temperature-sensitive mutant W7-2. Physiological, biochemical and transcriptomic studies showed that HY5 transcription factor and the downstream genes such as CHLH and PSY, which regulate the accumulation of different pigments, are required for the modulation of leaf color change in wucai under low temperature.


Subject(s)
Brassica/genetics , Brassica/metabolism , Chlorophyll/metabolism , Cold-Shock Response/physiology , Pigmentation/genetics , Pigmentation/physiology , Plant Leaves/metabolism , Chlorophyll/genetics , Gene Expression Regulation, Plant , Transcriptome
18.
BMC Genomics ; 22(1): 687, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34551703

ABSTRACT

BACKGROUND: Wucai (Brassica campestris L. ssp. chinensis var. rosularis Tsen) is a cold-tolerant plant that is vulnerable to high temperature. This study explored the response mechanism of wucai to low temperature. In this study, wucai seedlings were treated with different temperatures, including low temperature (LT), high temperature (HT), and a control. RESULTS: According to transcriptomics analysis, the number of differentially expressed genes (DEGs) in HT and LT was 10,702 and 7267, respectively, compared with the control. The key genes associated with the physiological response of wucai to the treatments were analyzed. The Kyoto Encyclopedia of Genes and Genomes and Gene Ontology annotations indicated the importance of the photosynthesis and photosynthetic-antenna protein pathways. We found that a high-temperature environment greatly inhibited the expression of important genes in the photosynthetic pathway (BrLhc superfamily members, PsaD, PsaE, PsaD, PsaD, PsbO, PsbP, PsbQ, PsbR, PsbS, PsbW, PsbY, Psb27, and Psb28), whereas low temperature resulted in the expression of certain key genes (BrLhc superfamily members, Psa F, Psa H, Psb S, Psb H, Psb 28). In addition, the wucai seedlings exhibited better photosynthetic performance under low-temperature conditions than high-temperature conditions. CONCLUSIONS: Based on the above results, we speculate that upon exposure to low temperature, the plants developed higher cold tolerance by upregulating the expression of genes related to photosynthesis. Conversely, high-temperature stress inhibited the expression of pivotal genes and weakened the self-regulating ability of the plants.


Subject(s)
Brassica , Brassica/genetics , Brassica/metabolism , Cold Temperature , Gene Expression Profiling , Gene Expression Regulation, Plant , Photosynthesis/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Temperature , Transcriptome
19.
BMC Genomics ; 22(1): 258, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33845769

ABSTRACT

BACKGROUND: Leaf color mutants are the ideal materials to explore the pathways of chlorophyll (Chl) metabolism, chloroplast development, and photosynthesis system. In this study, a spontaneous yellow-green leaf wucai (Brassica campestris L.) mutant "WY16-13" was identified, which exhibited yellow-green leaf color during its entire growth period. However, current understanding of the molecular mechanism underlying Chl metabolism and chloroplast development of "WY16-13" is limited. RESULTS: Total Chl and carotenoid content in WY16-13 was reduced by 60.92 and 58.82%, respectively, as compared with its wild type parental line W16-13. Electron microscopic investigation revealed fewer chloroplasts per cell and looser stroma lamellae in WY16-13 than in W16-13. A comparative transcriptome profiling was performed using leaves from the yellow-green leaf type (WY16-13) and normal green-leaf type (W16-13). A total of 54.12 million (M) (WY16-13) and 56.17 M (W16-13) reads were generated. A total of 40,578 genes were identified from the mapped libraries. We identified 3882 differentially expressed genes (DEGs) in WY16-13 compared with W16-13 (i.e., 1603 upregulated genes and 2279 downregulated genes). According to the Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, these DEGs are involved in porphyrin and Chl metabolism [i.e., chlorophyllase (CLH), heme oxygenase (HO), chlorophyll (ide) b reductase (NYC), and protochlorophyllide oxidoreductase (POR) genes], carbohydrate metabolism, photosynthesis, and carbon fixation in photosynthetic organisms. Moreover, deficiency in Chl biosynthetic intermediates in WY16-13 revealed that the formation of the yellow-green phenotype was related to the disorder of heme metabolism. CONCLUSIONS: Our results provide valuable insights into Chl deficiency in the yellow-green leaf mutant and a bioinformatics resource for further functional identification of key allelic genes responsible for differences in Chl content.


Subject(s)
Brassica , Brassica/genetics , Brassica/metabolism , Chlorophyll , Gene Expression Profiling , Gene Expression Regulation, Plant , Photosynthesis/genetics , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Transcriptome
20.
Food Sci Nutr ; 9(3): 1323-1335, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33747448

ABSTRACT

The quality of green leafy vegetables is easily lost during the postharvest period. The effect of exogenous 24-epibrassinolide (EBR) pretreatment on the quality of wucai was evaluated in the present study. Wucai plants were sprayed twice with 0.1 µM EBR before harvesting. Two storage temperatures were tested: 25°C and 4°C. At 4°C, EBR pretreatment significantly delayed the degradation of the pigment and plant water loss. Furthermore, we measured the activity of key enzymes of the ascorbic acid (AsA)-glutathione (GSH) cycle, the content of the main metabolites, and the expression of the AsA metabolism-related genes in leaves. The results indicated that all three plants showed stronger antioxidant capacity after EBR pretreatment. At 4°C and 25°C, the storage time of wucai was 20 days and 7 days after EBR treatment, while the samples could be stored for 14 days and 4 days without EBR treatment application, respectively. At 4°C, the nutritional properties of wucai pretreated with EBR, such as total free amino acids, total soluble sugar, and cellulose contents, were higher than those of the control, while the content of nitrite and lignin was lower than that of the control. Hence, EBR pretreatment was able to enhance the antioxidant capacity of wucai, maintain normal leaf color and shape during storage, and delay the decline of nutritional properties; therefore, EBR pretreatment has potential commercial value for prolonging the market life of wucai.

SELECTION OF CITATIONS
SEARCH DETAIL
...