Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Geroscience ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831184

ABSTRACT

Excessive growth hormone (GH) has been shown to promote joint degeneration in both preclinical and clinical studies. Little is known about the effect of disrupted GH or GH receptor (GHR) on joint health. The goal of this study is to investigate joint pathology in mice with either germline (GHR-/-) or adult inducible (iGHR-/-) GHR deficiency. Knee joints from male and female GHR-/- and WT mice at 24 months of age were processed for histological analysis. Also, knee joints from male and female iGHR-/- and WT mice at 22 months of age were scanned by micro-CT (µCT) for subchondral bone changes and characterized via histology for cartilage degeneration. Joint sections were also stained for the chondrocyte hypertrophy marker, COLX, and the cartilage degeneration marker, ADAMTS-5, using immunohistochemistry. Compared to WT mice, GHR-/- mice had remarkably smooth articular joint surfaces and an even distribution of proteoglycan with no signs of degeneration. Quantitatively, GHR-/- mice had lower OARSI and Mankin scores compared to WT controls. By contrast, iGHR-/- mice were only moderately protected from developing aging-associated OA. iGHR-/- mice had a significantly lower Mankin score compared to WT. However, Mankin scores were not significantly different between iGHR-/- and WT when males and females were analyzed separately. OARSI scores did not differ significantly between WT and iGHR-/- in either individual or combined sex analyses. Both GHR-/- and iGHR-/- mice had fewer COLX+ hypertrophic chondrocytes compared to WT, while no significant difference was observed in ADAMTS-5 staining. Compared to WT, a significantly lower trabecular thickness in the subchondral bone was observed in the iGHR-/- male mice but not in the female mice. However, there were no significant differences between WT and iGHR-/- mice in the bone volume to total tissue volume (BV/TV), bone mineral density (BMD), and trabecular number in either sex. This study identified that both germline and adult-induced GHR deficiency protected mice from developing aging-associated OA with more effective protection in GHR-/- mice.

2.
NPJ Microgravity ; 10(1): 16, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341423

ABSTRACT

Progress in mechanobiology allowed us to better understand the important role of mechanical forces in the regulation of biological processes. Space research in the field of life sciences clearly showed that gravity plays a crucial role in biological processes. The space environment offers the unique opportunity to carry out experiments without gravity, helping us not only to understand the effects of gravitational alterations on biological systems but also the mechanisms underlying mechanoperception and cell/tissue response to mechanical and gravitational stresses. Despite the progress made so far, for future space exploration programs it is necessary to increase our knowledge on the mechanotransduction processes as well as on the molecular mechanisms underlying microgravity-induced cell and tissue alterations. This white paper reports the suggestions and recommendations of the SciSpacE Science Community for the elaboration of the section of the European Space Agency roadmap "Biology in Space and Analogue Environments" focusing on "How are cells and tissues influenced by gravity and what are the gravity perception mechanisms?" The knowledge gaps that prevent the Science Community from fully answering this question and the activities proposed to fill them are discussed.

3.
Arthritis Rheumatol ; 75(7): 1139-1151, 2023 07.
Article in English | MEDLINE | ID: mdl-36762426

ABSTRACT

OBJECTIVE: Many patients with acromegaly, a hormonal disorder with excessive growth hormone (GH) production, report pain in joints. We undertook this study to characterize the joint pathology of mice with overexpression of bovine GH (bGH) or a GH receptor antagonist (GHa) and to investigate the effect of GH on regulation of chondrocyte cellular metabolism. METHODS: Knee joints from mice overexpressing bGH or GHa and wild-type (WT) control mice were examined using histology and micro-computed tomography for osteoarthritic (OA) pathologies. Additionally, cartilage from bGH mice was used for metabolomics analysis. Mouse primary chondrocytes from bGH and WT mice, with or without pegvisomant treatment, were used for quantitative polymerase chain reaction and Seahorse respirometry analyses. RESULTS: Both male and female bGH mice at ~13 months of age had increased knee joint degeneration, which was characterized by loss of cartilage structure, expansion of hypertrophic chondrocytes, synovitis, and subchondral plate thinning. The joint pathologies were also demonstrated by significantly higher Osteoarthritis Research Society International and Mankin scores in bGH mice compared to WT control mice. Metabolomics analysis revealed changes in a wide range of metabolic pathways in bGH mice, including beta-alanine metabolism, tryptophan metabolism, lysine degradation, and ascorbate and aldarate metabolism. Also, bGH chondrocytes up-regulated fatty acid oxidation and increased expression of Col10a. Joints of GHa mice were remarkably protected from developing age-associated joint degeneration, with smooth articular joint surface. CONCLUSION: This study showed that an excessive amount of GH promotes joint degeneration in mice, which was associated with chondrocyte metabolic dysfunction and hypertrophic changes, whereas antagonizing GH action through a GHa protects mice from OA development.


Subject(s)
Acromegaly , Cartilage, Articular , Osteoarthritis, Knee , Mice , Animals , Male , Female , Cattle , Chondrocytes/metabolism , Acromegaly/metabolism , Acromegaly/pathology , X-Ray Microtomography , Growth Hormone/metabolism , Cartilage, Articular/metabolism , Mice, Transgenic
4.
J Bone Miner Res ; 37(12): 2531-2547, 2022 12.
Article in English | MEDLINE | ID: mdl-36214465

ABSTRACT

Understanding how obesity-induced metabolic stress contributes to synovial joint tissue damage is difficult because of the complex role of metabolism in joint development, maintenance, and repair. Chondrocyte mitochondrial dysfunction is implicated in osteoarthritis (OA) pathology, which motivated us to study the mitochondrial deacetylase enzyme sirtuin 3 (Sirt3). We hypothesized that combining high-fat-diet (HFD)-induced obesity and cartilage Sirt3 loss at a young age would impair chondrocyte mitochondrial function, leading to cellular stress and accelerated OA. Instead, we unexpectedly found that depleting cartilage Sirt3 at 5 weeks of age using Sirt3-flox and Acan-CreERT2 mice protected against the development of cartilage degeneration and synovial hyperplasia following 20 weeks of HFD. This protection was associated with increased cartilage glycolysis proteins and reduced mitochondrial fatty acid metabolism proteins. Seahorse-based assays supported a mitochondrial-to-glycolytic shift in chondrocyte metabolism with Sirt3 deletion. Additional studies with primary murine juvenile chondrocytes under hypoxic and inflammatory conditions showed an increased expression of hypoxia-inducible factor (HIF-1) target genes with Sirt3 deletion. However, Sirt3 deletion impaired chondrogenesis using a murine bone marrow stem/stromal cell pellet model, suggesting a context-dependent role of Sirt3 in cartilage homeostasis. Overall, our data indicate that Sirt3 coordinates HFD-induced changes in mature chondrocyte metabolism that promote OA. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Cell Respiration , Chondrocytes , Chondrogenesis , Diet, High-Fat , Mitochondria , Osteoarthritis , Sirtuin 3 , Animals , Mice , Chondrocytes/metabolism , Diet, High-Fat/adverse effects , Mitochondria/metabolism , Obesity/genetics , Obesity/metabolism , Osteoarthritis/etiology , Osteoarthritis/genetics , Sirtuin 3/genetics , Sirtuin 3/metabolism
6.
Front Physiol ; 13: 867921, 2022.
Article in English | MEDLINE | ID: mdl-35665221

ABSTRACT

Growth hormone (GH) is a peptide hormone that can signal directly through its receptor or indirectly through insulin-like growth factor 1 (IGF-1) stimulation. GH draws its name from its anabolic effects on muscle and bone but also has distinct metabolic effects in multiple tissues. In addition to its metabolic and musculoskeletal effects, GH is closely associated with aging, with levels declining as individuals age but GH action negatively correlating with lifespan. GH's effects have been studied in human conditions of GH alteration, such as acromegaly and Laron syndrome, and GH therapies have been suggested to combat aging-related musculoskeletal diseases, in part, because of the decline in GH levels with advanced age. While clinical data are inconclusive, animal models have been indispensable in understanding the underlying molecular mechanisms of GH action. This review will provide a brief overview of the musculoskeletal effects of GH, focusing on clinical and animal models.

7.
J Orthop Res ; 40(12): 2771-2779, 2022 12.
Article in English | MEDLINE | ID: mdl-35279877

ABSTRACT

Obesity promotes the development of osteoarthritis (OA). It is also well-established that obesity leads to excessive lipid deposition in nonadipose tissues, which often induces lipotoxicity. The objective of this study was to investigate changes in the levels of various lipids in mouse cartilage in the context of obesity and determine if chondrocyte de novo lipogenesis is altered. We used Oil Red O to determine the accumulation of lipid droplets in cartilage from mice fed high-fat diet (HFD) or low-fat diet (LFD). We further used mass spectrometry-based lipidomic analyses to quantify levels of different lipid species. Expression of genes involving in fatty acid (FA) uptake, synthesis, elongation, and desaturation were examined using quantitative polymerase chain reaction. To further study the potential mechanisms, we cultured primary mouse chondrocytes under high-glucose and high-insulin conditions to mimic the local microenvironment associated with obesity and subsequently examined the abundance of cellular lipid droplets. The acetyl-CoA carboxylase (ACC) inhibitor, ND-630, was added to the culture medium to examine the effect of inhibiting de novo lipogenesis on lipid accumulation in chondrocytes. When compared to the mice receiving LFD, the HFD group displayed more chondrocytes with visible intracellular lipid droplets. Significantly higher amounts of total FAs were also detected in the HFD group. Five out of six significantly upregulated FAs were ω-6 FAs, while the two significantly downregulated FAs were ω-3 FAs. Consequently, the HFD group displayed a significantly higher ω-6/ω-3 FA ratio. Ether linked phosphatidylcholine was also found to be higher in the HFD group. Fatty acid desaturase (Fad1-3), fatty acid-binding protein 4 (Fabp4), and fatty acid synthase (Fasn) transcripts were not found to be different between the treatment groups and fatty acid elongase (Elovl1-7) transcripts were undetectable in cartilage. Ceramide synthase 2 (Cers-2), the only transcript found to be changed in these studies, was significantly upregulated in the HFD group. In vitro, chondrocytes upregulated de novo lipogenesis when cultured under high-glucose, high-insulin conditions, and this observation was associated with the activation of ACC, which was attenuated by the addition of ND-630. This study provides the first evidence that lipid deposition is increased in cartilage with obesity and that this is associated with the upregulation of ACC-mediated de novo lipogenesis. This was supported by our observation that ACC inhibition ameliorated lipid accumulation in chondrocytes, thereby suggesting that ACC could potentially be targeted to treat obesity-associated OA.


Subject(s)
Fatty Acids, Omega-3 , Insulins , Mice , Animals , Lipogenesis/genetics , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Acetyl-CoA Carboxylase/pharmacology , Chondrocytes/metabolism , Liver/metabolism , Obesity/complications , Obesity/metabolism , Diet, High-Fat/adverse effects , Glucose/metabolism , Insulins/metabolism , Insulins/pharmacology
8.
Nat Commun ; 12(1): 1706, 2021 03 17.
Article in English | MEDLINE | ID: mdl-33731712

ABSTRACT

Our incomplete understanding of osteoarthritis (OA) pathogenesis has significantly hindered the development of disease-modifying therapy. The functional relationship between subchondral bone (SB) and articular cartilage (AC) is unclear. Here, we found that the changes of SB architecture altered the distribution of mechanical stress on AC. Importantly, the latter is well aligned with the pattern of transforming growth factor beta (TGFß) activity in AC, which is essential in the regulation of AC homeostasis. Specifically, TGFß activity is concentrated in the areas of AC with high mechanical stress. A high level of TGFß disrupts the cartilage homeostasis and impairs the metabolic activity of chondrocytes. Mechanical stress stimulates talin-centered cytoskeletal reorganization and the consequent increase of cell contractile forces and cell stiffness of chondrocytes, which triggers αV integrin-mediated TGFß activation. Knockout of αV integrin in chondrocytes reversed the alteration of TGFß activation and subsequent metabolic abnormalities in AC and attenuated cartilage degeneration in an OA mouse model. Thus, SB structure determines the patterns of mechanical stress and the configuration of TGFß activation in AC, which subsequently regulates chondrocyte metabolism and AC homeostasis.


Subject(s)
Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Stress, Mechanical , Transforming Growth Factor beta/metabolism , Animals , Bone and Bones/pathology , Cell Line , Chondrocytes/metabolism , Cytoskeleton/metabolism , Homeostasis , Humans , Integrin alphaV/genetics , Integrin alphaV/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Osteoarthritis/metabolism , Osteoarthritis/pathology , Signal Transduction , Talin/metabolism
9.
Cartilage ; 13(2_suppl): 1185S-1199S, 2021 12.
Article in English | MEDLINE | ID: mdl-33567897

ABSTRACT

OBJECTIVE: Obesity accelerates the development of osteoarthritis (OA) during aging and is associated with altered chondrocyte cellular metabolism. Protein lysine malonylation (MaK) is a posttranslational modification (PTM) that has been shown to play an important role during aging and obesity. The objective of this study was to investigate the role of sirtuin 5 (Sirt5) in regulating MaK and cellular metabolism in chondrocytes under obesity-related conditions. METHODS: MaK and SIRT5 were immunostained in knee articular cartilage of obese db/db mice and different aged C57BL6 mice with or without destabilization of the medial meniscus surgery to induce OA. Primary chondrocytes were isolated from 7-day-old WT and Sirt5-/- mice and treated with varying concentrations of glucose and insulin to mimic obesity. Sirt5-dependent effects on MaK and metabolism were evaluated by western blot, Seahorse Respirometry, and gas/chromatography-mass/spectrometry (GC-MS) metabolic profiling. RESULTS: MaK was significantly increased in cartilage of db/db mice and in chondrocytes treated with high concentrations of glucose and insulin (GluhiInshi). Sirt5 was increased in an age-dependent manner following joint injury, and Sirt5 deficient primary chondrocytes had increased MaK, decreased glycolysis rate, and reduced basal mitochondrial respiration. GC-MS identified 41 metabolites. Sirt5 deficiency altered 13 distinct metabolites under basal conditions and 18 metabolites under GluhiInshi treatment. Pathway analysis identified a wide range of Sirt5-dependent altered metabolic pathways that include amino acid metabolism, TCA cycle, and glycolysis. CONCLUSION: This study provides the first evidence that Sirt5 broadly regulates chondrocyte metabolism. We observed changes in SIRT5 and MaK levels in cartilage with obesity and joint injury, suggesting that the Sirt5-MaK pathway may contribute to altered chondrocyte metabolism that occurs during OA development.


Subject(s)
Cartilage, Articular , Chondrocytes , Obesity , Sirtuins , Animals , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Chondrocytes/metabolism , Chondrocytes/pathology , Mice , Mice, Inbred C57BL , Obesity/metabolism , Obesity/pathology , Osteoarthritis/metabolism , Sirtuins/deficiency , Sirtuins/metabolism
10.
Biochem Biophys Res Commun ; 532(3): 433-439, 2020 11 12.
Article in English | MEDLINE | ID: mdl-32891432

ABSTRACT

Mesenchymal stem cells (MSCs) are an important cell source for tissue homeostasis and repair due to their stemness characteristic. Lots of intrinsic signaling pathways have been reported to regulate MSC stemness, but the extrinsic signals such as sodium lactate, particularly in physiological conditions, are poorly understood. Herein, we evaluated the effect of sodium lactate on human MSC stemness regulation by examining colony-forming ability, energy metabolism, multi-lineage differentiation ability, and pluripotent gene and protein expression. The underlying mechanism was further investigated with gene knockdown as well as small molecule interference and rescue experiments. We found that: (1) low concentration (1 mM) of sodium lactate promoted the stemness of human MSCs; (2) the upregulation of glycolysis was responsible for the MSC stemness promotion; (3) lysine demethylase 6B (KDM6B) was the key regulator which mediated sodium lactate-induced glycolysis and human MSC stemness enhancement. This study indicated that sodium lactate played an important role in human MSC stemness maintenance in physiological conditions, which could be related to KDM6B mediated metabolic regulation. It would provide new insight into stem cell biology, and contribute to cell transplantation and tissue regeneration strategies.


Subject(s)
Glycolysis/drug effects , Jumonji Domain-Containing Histone Demethylases/metabolism , Mesenchymal Stem Cells/drug effects , Sodium Lactate/pharmacology , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Self Renewal/drug effects , Cell Self Renewal/genetics , Cells, Cultured , Colony-Forming Units Assay , Energy Metabolism/drug effects , Gene Expression/drug effects , Gene Knockdown Techniques , Glycolysis/genetics , Humans , Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors , Jumonji Domain-Containing Histone Demethylases/genetics , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Up-Regulation/drug effects
11.
Am J Sports Med ; 48(11): 2808-2818, 2020 09.
Article in English | MEDLINE | ID: mdl-32762553

ABSTRACT

BACKGROUND: Osteoarthritis is the leading cause of disability worldwide; cartilage degeneration and defects are the central features. Significant progress in tissue engineering holds promise to regenerate damaged cartilage tissue. However, a formidable challenge is to develop a 3-dimensional (3D) tissue construct that can regulate local immune environment to facilitate the intrinsic osteochondral regeneration. PURPOSE: To evaluate efficacy of a 3D-printed decellularized cartilage extracellular matrix (ECM) and polyethylene glycol diacrylate (PEGDA) integrated novel scaffold (PEGDA/ECM) together with the natural compound honokiol (Hon) for regenerating osteochondral defect. STUDY DESIGN: Controlled laboratory study. METHODS: We used a stereolithography-based 3D printer for PEGDA/ECM bioprinting. A total of 36 Sprague-Dawley rats with cylindrical osteochondral defect in the trochlear groove of the femur were randomly assigned into 3 different treatments: no scaffold implantation (Defect group), 3D printed PEGDA/ECM scaffold alone (PEGDA/ECM group), or Hon suspended in a 3D-printed PEGDA/ECM scaffold (PEGDA/ECM/Hon group). 12 rats that underwent only medial parapatellar incision surgery were used as normal controls. The femur specimens were postoperatively harvested at 4 and 8 weeks for gross, micro-CT, and histological evaluations. The efficacy of PEGDA/ECM/Hon scaffold on the release of proinflammatory cytokines from the macrophages stimulated by lipopolysaccharide (LPS) was evaluated in-vitro. RESULTS: In vitro results determined that PEGDA/ECM/Hon scaffold could suppress the release of proinflammatory cytokines from macrophages that were stimulated by LPS. Macroscopic images showed that the PEGDA/ECM/Hon group had significantly higher ICRS scoring than that of defect and PEGDA/ECM groups. Micro-CT evaluation demonstrated that much more bony tissue was formed in the defect sites implanted with the PEGDA/ECM scaffold or PEGDA/ECM/Hon scaffold compared with the untreated defects. Histological analysis showed that the PEGDA/ECM/Hon group had a significant enhancement in osteochondral regeneration at 4 and 8 weeks after surgery in comparison with the ECM/PEGDA or defect group. CONCLUSION: This study demonstrated that 3D printing of PEGDA/ECM hydrogel incorporating the anti-inflammatory phytomolecule honokiol could provide a promising scaffold for osteochondral defect repair.


Subject(s)
Cartilage, Articular , Hydrogels , Osteoarthritis , Tissue Scaffolds , Animals , Anti-Inflammatory Agents , Biphenyl Compounds , Extracellular Matrix , Lignans , Osteoarthritis/therapy , Polyethylene Glycols , Printing, Three-Dimensional , Rats , Rats, Sprague-Dawley , Regeneration
12.
Stem Cell Reports ; 14(3): 478-492, 2020 03 10.
Article in English | MEDLINE | ID: mdl-32084387

ABSTRACT

Articular cartilage injury and degeneration causing pain and loss of quality-of-life has become a serious problem for increasingly aged populations. Given the poor self-renewal of adult human chondrocytes, alternative functional cell sources are needed. Direct reprogramming by small molecules potentially offers an oncogene-free and cost-effective approach to generate chondrocytes, but has yet to be investigated. Here, we directly reprogrammed mouse embryonic fibroblasts into PRG4+ chondrocytes using a 3D system with a chemical cocktail, VCRTc (valproic acid, CHIR98014, Repsox, TTNPB, and celecoxib). Using single-cell transcriptomics, we revealed the inhibition of fibroblast features and activation of chondrogenesis pathways in early reprograming, and the intermediate cellular process resembling cartilage development. The in vivo implantation of chemical-induced chondrocytes at defective articular surfaces promoted defect healing and rescued 63.4% of mechanical function loss. Our approach directly converts fibroblasts into functional cartilaginous cells, and also provides insights into potential pharmacological strategies for future cartilage regeneration.


Subject(s)
Embryo, Mammalian/cytology , Fibroblasts/cytology , Fibrocartilage/cytology , Animals , Cellular Reprogramming , Chondrocytes/cytology , Chondrocytes/metabolism , Chondrogenesis , Fibroblasts/metabolism , Mice , Organoids/cytology , Regeneration , Tissue Scaffolds/chemistry , Transcriptome/genetics
13.
J Bone Miner Res ; 35(5): 956-965, 2020 05.
Article in English | MEDLINE | ID: mdl-31910305

ABSTRACT

Epigenetic regulation is highly correlated with osteoarthritis (OA) development, whereas its role and detailed mechanisms remain elusive. In this study, we explored the expression of EZH2, an H3K27me3 transferase, in human OA cartilages and its roles in regulating OA pathogenesis. Here, we found EZH2 was highly expressed in both mice and human OA cartilage samples by using histological analysis and RNA sequencing (RNA-Seq). The medial meniscectomy (MMx) OA model results indicated the conditional knockout of Ezh2 deteriorated OA pathological conditions. Furthermore, we showed the positive role of Ezh2 in cartilage wound healing and inhibition of hypertrophy through activating TNFSF13B, a member of the tumor necrosis factor superfamily. Further, we also indicated that the effect of TNFSF13B, increased by Ezh2, might boost the healing of chondrocytes through increasing the phosphorylation of Akt. Taken together, our results uncovered an EZH2-positive subpopulation existed in OA patients, and that EZH2-TNFSF13B signaling was responsible for regulating chondrocyte healing and hypertrophy. Thus, EZH2 might act as a new potential target for OA diagnosis and treatment. © 2020 American Society for Bone and Mineral Research.


Subject(s)
Cartilage, Articular , Enhancer of Zeste Homolog 2 Protein , Osteoarthritis , Animals , B-Cell Activating Factor , Cartilage , Chondrocytes , Enhancer of Zeste Homolog 2 Protein/genetics , Epigenesis, Genetic , Humans , Hypertrophy , Mice , Osteoarthritis/genetics
14.
Connect Tissue Res ; 61(1): 34-47, 2020 01.
Article in English | MEDLINE | ID: mdl-31522568

ABSTRACT

Purpose: An underlying cause of osteoarthritis (OA) is the inability of chondrocytes to maintain homeostasis in response to changing stress conditions. The purpose of this article was to review and experimentally evaluate oxidative stress resistance and resilience concepts in cartilage using glutathione redox homeostasis as an example. This framework may help identify novel approaches for promoting chondrocyte homeostasis during aging and obesity.Materials and Methods: Changes in glutathione content and redox ratio were evaluated in three models of chondrocyte stress: (1) age- and tissue-specific changes in joint tissues of 10 and 30-month old F344BN rats, including ex vivo patella culture experiments to evaluate N-acetylcysteine dependent resistance to interleukin-1beta; (2) effect of different durations and patterns of cyclic compressive loading in bovine cartilage on glutathione stress resistance and resilience pathways; (3) time-dependent changes in GSH:GSSG in primary chondrocytes from wild-type and Sirt3 deficient mice challenged with the pro-oxidant menadione.Results: Glutathione was more abundant in cartilage than meniscus or infrapatellar fat pad, although cartilage was also more susceptible to age-related glutathione oxidation. Glutathione redox homeostasis was sensitive to the duration of compressive loading such that load-induced oxidation required unloaded periods to recover and increase total antioxidant capacity. Exposure to a pro-oxidant stress enhanced stress resistance by increasing glutathione content and GSH:GSSG ratio, especially in Sirt3 deficient cells. However, the rate of recovery, a marker of resilience, was delayed without Sirt3.Conclusions: OA-related models of cartilage stress reveal multiple mechanisms by which glutathione provides oxidative stress resistance and resilience.


Subject(s)
Aging/metabolism , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Glutathione/metabolism , Osteoarthritis/metabolism , Oxidative Stress , Aging/pathology , Animals , Cartilage, Articular/pathology , Chondrocytes/pathology , Humans , Osteoarthritis/pathology , Rats
15.
J Clin Invest ; 129(6): 2578-2594, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30946695

ABSTRACT

The periosteum, a thin tissue that covers almost the entire bone surface, accounts for more than 80% of human bone mass and is essential for bone regeneration. Its osteogenic and bone regenerative abilities are well studied, but much is unknown about the periosteum. In this study, we found that macrophage-lineage cells recruit periosteum-derived cells (PDCs) for cortical bone formation. Knockout of colony stimulating factor-1 eliminated macrophage-lineage cells and resulted in loss of PDCs with impaired periosteal bone formation. Moreover, macrophage-lineage TRAP+ cells induced transcriptional expression of periostin and recruitment of PDCs to the periosteal surface through secretion of platelet-derived growth factor-BB (PDGF-BB), where the recruited PDCs underwent osteoblast differentiation coupled with type H vessel formation. We also found that subsets of Nestin+ and LepR+ PDCs possess multipotent and self-renewal abilities and contribute to cortical bone formation. Nestin+ PDCs are found primarily during bone development, whereas LepR+ PDCs are essential for bone homeostasis in adult mice. Importantly, conditional knockout of Pdgfrß (platelet-derived growth factor receptor beta) in LepR+ cells impaired periosteal bone formation and regeneration. These findings uncover the essential role of periosteal macrophage-lineage cells in regulating periosteum homeostasis and regeneration.


Subject(s)
Bone Regeneration , Cortical Bone/metabolism , Macrophages/metabolism , Osteogenesis , Periosteum/metabolism , Tartrate-Resistant Acid Phosphatase/metabolism , Animals , Mice , Mice, Knockout , Osteoblasts/metabolism , Tartrate-Resistant Acid Phosphatase/genetics
16.
Nat Commun ; 10(1): 181, 2019 01 14.
Article in English | MEDLINE | ID: mdl-30643142

ABSTRACT

Whether sensory nerve can sense bone density or metabolic activity to control bone homeostasis is unknown. Here we found prostaglandin E2 (PGE2) secreted by osteoblastic cells activates PGE2 receptor 4 (EP4) in sensory nerves to regulate bone formation by inhibiting sympathetic activity through the central nervous system. PGE2 secreted by osteoblasts increases when bone density decreases as demonstrated in osteoporotic animal models. Ablation of sensory nerves erodes the skeletal integrity. Specifically, knockout of the EP4 gene in the sensory nerves or cyclooxygenase-2 (COX2) in the osteoblastic cells significantly reduces bone volume in adult mice. Sympathetic tone is increased in sensory denervation models, and propranolol, a ß2-adrenergic antagonist, rescues bone loss. Furthermore, injection of SW033291, a small molecule to increase PGE2 level locally, significantly boostes bone formation, whereas the effect is obstructed in EP4 knockout mice. Thus, we show that PGE2 mediates sensory nerve to control bone homeostasis and promote regeneration.


Subject(s)
Bone and Bones/metabolism , Dinoprostone/metabolism , Osteoporosis/pathology , Receptors, Prostaglandin E, EP4 Subtype/metabolism , Sensory Receptor Cells/metabolism , Adrenergic Fibers/drug effects , Adrenergic Fibers/metabolism , Adrenergic beta-Antagonists/pharmacology , Animals , Bone Density/drug effects , Bone Regeneration/drug effects , Bone and Bones/cytology , Bone and Bones/innervation , Bone and Bones/pathology , Cells, Cultured , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Disease Models, Animal , Feedback, Physiological , Female , Humans , Hydroxyprostaglandin Dehydrogenases/antagonists & inhibitors , Hydroxyprostaglandin Dehydrogenases/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteoporosis/etiology , Propranolol/pharmacology , Pyridines/pharmacology , Receptors, Prostaglandin E, EP4 Subtype/genetics , Sensory Receptor Cells/drug effects , Thiophenes/pharmacology
17.
ACS Biomater Sci Eng ; 5(7): 3511-3522, 2019 Jul 08.
Article in English | MEDLINE | ID: mdl-33405734

ABSTRACT

Tendinopathy is a common disease, which is characterized by pain, swelling, and dysfunction. At the late stage of tendinopathy, pathological changes may occur, such as tendon calcification. Previously, we have shown that in situ tendon stem/progenitor cells (TSPCs) underwent osteogenesis in the inflammatory niche in diseased tendons. In this study, we demonstrate that this process is accompanied by the activation of Ras-related C3 botulinum toxin substrate 1 (Rac1) signaling. A specific inhibitor NSC23766 significantly downregulated catabolic factors and calcification-related genes and rescued the tenogenesis gene expression of TSPCs under the influence of Interleukin (IL)-1ß in vitro. For in vivo evaluation, we further developed a drug delivery system to encapsulate Rac1 inhibitor NSC23766. Chitosan/ß-glycerophosphate hydrogel encapsulated NSC23766 effectively impeded tendon calcification and enhanced tendon regeneration in rat Achilles tendinosis. Our findings indicated that inhibiting Rac1 signaling could act as an effective intervention for tendon pathological calcification and promote tendon regeneration, thus providing a new therapeutic strategy.

18.
J Clin Invest ; 129(3): 1076-1093, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30530994

ABSTRACT

Joint pain is the defining symptom of osteoarthritis (OA) but its origin and mechanisms remain unclear. Here, we investigated an unprecedented role of osteoclast-initiated subchondral bone remodeling in sensory innervation for OA pain. We show that osteoclasts secrete netrin-1 to induce sensory nerve axonal growth in subchondral bone. Reduction of osteoclast formation by knockout of receptor activator of nuclear factor kappa-B ligand (Rankl) in osteocytes inhibited the growth of sensory nerves into subchondral bone, dorsal root ganglion neuron hyperexcitability, and behavioral measures of pain hypersensitivity in OA mice. Moreover, we demonstrated a possible role for netrin-1 secreted by osteoclasts during aberrant subchondral bone remodeling in inducing sensory innervation and OA pain through its receptor DCC (deleted in colorectal cancer). Importantly, knockout of Netrin1 in tartrate-resistant acid phosphatase-positive (TRAP-positive) osteoclasts or knockdown of Dcc reduces OA pain behavior. In particular, inhibition of osteoclast activity by alendronate modifies aberrant subchondral bone remodeling and reduces innervation and pain behavior at the early stage of OA. These results suggest that intervention of the axonal guidance molecules (e.g., netrin-1) derived from aberrant subchondral bone remodeling may have therapeutic potential for OA pain.


Subject(s)
Ganglia, Spinal/metabolism , Netrin-1/metabolism , Osteoarthritis/metabolism , Osteoclasts/metabolism , Pain/metabolism , Sensory Receptor Cells/metabolism , Animals , Bone Remodeling/genetics , DCC Receptor/genetics , DCC Receptor/metabolism , Ganglia, Spinal/pathology , Male , Mice , Netrin-1/genetics , Osteoarthritis/genetics , Osteoarthritis/pathology , Osteoclasts/pathology , Pain/genetics , Pain/pathology , Sensory Receptor Cells/pathology
19.
Acta Biomater ; 63: 64-75, 2017 11.
Article in English | MEDLINE | ID: mdl-28890259

ABSTRACT

The demand of favorable scaffolds has increased for the emerging cartilage tissue engineering. Chondroitin sulfate (CS) and silk fibroin have been investigated and reported with safety and excellent biocompatibility as tissue engineering scaffolds. However, the rapid degradation rate of pure CS scaffolds presents a challenge to effectively recreate neo-tissue similar to natural articular cartilage. Meanwhile the silk fibroin is well used as a structural constituent material because its remarkable mechanical properties, long-lasting in vivo stability and hypoimmunity. The application of composite silk fibroin and CS scaffolds for joint cartilage repair has not been well studied. Here we report that the combination of silk fibroin and CS could synergistically promote articular cartilage defect repair. The silk fibroin (silk) and silk fibroin/CS (silk-CS) scaffolds were fabricated with salt-leaching, freeze-drying and crosslinking methodologies. The biocompatibility of the scaffolds was investigated in vitro by cell adhesion, proliferation and migration with human articular chondrocytes. We found that silk-CS scaffold maintained better chondrocyte phenotype than silk scaffold; moreover, the silk-CS scaffolds reduced chondrocyte inflammatory response that was induced by interleukin (IL)-1ß, which is in consistent with the well-documented anti-inflammatory activities of CS. The in vivo cartilage repair was evaluated with a rabbit osteochondral defect model. Silk-CS scaffold induced more neo-tissue formation and better structural restoration than silk scaffold after 6 and 12weeks of implantation in ICRS histological evaluations. In conclusion, we have developed a silk fibroin/ chondroitin sulfate scaffold for cartilage tissue engineering that exhibits immuno-inhibition property and can improve the self-repair capacity of cartilage. STATEMENT OF SIGNIFICANCE: Severe cartilage defect such as osteoarthritis (OA) is difficult to self-repair because of its avascular, aneural and alymphatic nature. Current scaffolds often focus on providing sufficient mechanical support or bio-mimetic structure to promote cartilage repair. Thus, silk has been adopted and investigated broadly. However, inflammation is one of the most important factors in OA. But few scaffolds for cartilage repair reported anti-inflammation property. Meanwhile, chondroitin sulfate (CS) is a glycosaminoglycan present in the natural cartilage ECM, and has exhibited a number of useful biological properties including anti-inflammatory activity. Thus, we designed this silk-CS scaffold and proved that this scaffold exhibited good anti-inflammatory effects both in vitro and in vivo, promoted the repair of articular cartilage defect in animal model.


Subject(s)
Cartilage, Articular/physiology , Chondroitin Sulfates/pharmacology , Fibroins/pharmacology , Regeneration/drug effects , Tissue Scaffolds/chemistry , Animals , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Cartilage, Articular/surgery , Cell Adhesion/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Fibroins/ultrastructure , Humans , Interleukin-1beta/pharmacology , Male , Phenotype , Rabbits
20.
Acta Biomater ; 56: 129-140, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28502669

ABSTRACT

Management of ligament/tendon-to-bone-junction healing remains a formidable challenge in the field of orthopedic medicine to date, due to deficient vascularity and multi-tissue transitional structure of the junction. Numerous strategies have been employed to improve ligament-bone junction healing, including delivery of stem cells, bioactive factors, and synthetic materials, but these methods are often inadequate at recapitulating the complex structure-function relationships at native tissue interfaces. Here, we developed an easily-fabricated and effective biomimetic composite to promote the regeneration of ligament-bone junction by physically modifying the tendon extracellular matrix (ECM) into a Random-Aligned-Random composite using ultrasound treatment. The differentiation potential of rabbit bone marrow stromal cells on the modified ECM were examined in vitro. The results demonstrated that the modified ECM enhanced expression of chondrogenesis and osteogenesis-associated epigenetic genes (Jmjd1c, Kdm6b), transcription factor genes (Sox9, Runx2) and extracellular matrix genes (Col2a1, Ocn), resulting in higher osteoinductivity than the untreated tendon ECM in vitro. In the rabbit anterior cruciate ligament (ACL) reconstruction model in vivo, micro-computed tomography (Micro-CT) and histological analysis showed that the modified Random-Aligned-Random composite scaffold enhanced bone and fibrocartilage formation at the interface, more efficaciously than the unmodified tendon ECM. Therefore, these results demonstrated that the biomimetic Random-Aligned-Random composite could be a promising scaffold for ligament/tendon-bone junction repair. STATEMENT OF SIGNIFICANCE: The native transitional region consists of several distinct yet contiguous tissue regions, composed of soft tissue, non-calcified fibrocartilage, calcified fibrocartilage, and bone. A stratified graft whose phases are interconnected with each other is essential for supporting the formation of functionally continuous multi-tissue regions. Various techniques have been attempted to improve adherence of the ligament/tendon graft to bone, including utilization of stem cells, growth factors and biomaterials, but these methods are often inadequate at recapitulating the complex structure-function relationships at native tissue interfaces. Here, we developed an easily-fabricated and effective biomimetic composite to promote the regeneration of ligament-bone junction by physically modifying the tendon extracellular matrix (ECM) into a Random-Aligned-Random composite using ultrasound treatment. The modified ECM enhanced expression of chondrogenesis and osteogenesis-associated epigenetic genes expression in vitro. In the rabbit anterior crucial ligament reconstruction model in vivo, results showed that the modified Random-Aligned-Random composite enhances the bone and fibrocartilage formation in the interface, proving to be more efficient than the unmodified tendon ECM. Therefore, these results demonstrated that the biomimetic Random-Aligned-Random composite could be a promising scaffold for ligament/tendon-bone junction repair.


Subject(s)
Bone Marrow Cells/metabolism , Chondrogenesis , Epigenesis, Genetic , Extracellular Matrix , Stromal Cells/metabolism , Tissue Scaffolds/chemistry , Animals , Bone Marrow Cells/cytology , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Female , Rabbits , Stromal Cells/cytology , Tendons
SELECTION OF CITATIONS
SEARCH DETAIL
...