Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 55(15): 7295-300, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-27408952

ABSTRACT

Organic metalloporphyrins and inorganic polyoxometalates (POMs) are two kinds of efficient molecular catalysts to prompt a variety of chemical reactions. They have been used as active moieties for the synthesis of porous materials to realize highly efficient heterogeneous catalysis. Both of them are regarded as the organic/inorganic equivalent counterparts to complement the individual features. Therefore, the combination of metalloporphyrins and POMs in the same hybrid materials might generate interesting catalytic properties by emerging their unique individual functions. To avoid the random connections between metalloporphyrins, POMs, and lanthanide connecting nodes, we have developed a "step-by-step" aggregation strategy, including the reaction of POMs with metal ions to bind metal nodes on the surfaces of POMs at the first step and the reaction of the resulting POM derivatives with metalloporphyrin linkers to result in hybrid materials at the second step. Catalytic experiments demonstrate that the resulting hybrid material exhibits interesting catalytic properties in the heterogeneous epoxidation of olefins, in which the conversion, epoxide selectivity, turnover number, and turnover frequency for the epoxidation of styrene to (1,2-epoxyethyl)benzene are >99%, 94%, 220000, and 22000 h(-1), respectively. These results demonstrate that the collaborative work of multiple active sites in hybrid materials can achieve superior high efficiency in heterogeneous catalysis.

2.
Dalton Trans ; 44(5): 2038-41, 2015 Feb 07.
Article in English | MEDLINE | ID: mdl-25515613

ABSTRACT

A novel 3D porous metal-organic framework was constructed from imidazole carboxylate linkers and copper(ii) nodes, which in situ generates multiple active Cu(II) sites in the nanosized channel walls for highly efficient cross dehydrogenative coupling reaction between 1,2,3,4-tetrahydroisoquinoline derivatives and nitroalkanes that are superior to the simple copper salts.

SELECTION OF CITATIONS
SEARCH DETAIL
...