Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Lab Chip ; 24(10): 2683-2699, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38651213

ABSTRACT

Cancer drug testing in animals is an extremely poor predictor of the drug's safety and efficacy observed in humans. Hence there is a pressing need for functional testing platforms that better predict traditional and immunotherapy responses in human, live tumor tissue or tissue constructs, and at the same time are compatible with the use of mouse tumor tissue to facilitate building more accurate disease models. Since many cancer drug actions rely on mechanisms that depend on the tumor microenvironment (TME), such platforms should also retain as much of the native TME as possible. Additionally, platforms based on miniaturization technologies are desirable to reduce animal use and sensitivity to human tissue scarcity. Present high-throughput testing platforms that have some of these features, e.g. based on patient-derived tumor organoids, require a growth step that alters the TME. On the other hand, microdissected tumors (µDTs) or "spheroids" that retain an intact TME have shown promising responses to immunomodulators acting on native immune cells. However, difficult tissue handling after microdissection has reduced the throughput of drug testing on µDTs, thereby constraining the inherent advantages of producing numerous TME-preserving units of tissue for drug testing. Here we demonstrate a microfluidic 96-well platform designed for drug treatment of hundreds of similarly-sized, cuboidal µDTs ("cuboids") produced from a single tumor sample. The platform organizes a monodisperse array of four cuboids per well in 384 hydrodynamic traps. The microfluidic device, entirely fabricated in thermoplastics, features 96 microvalves that fluidically isolate each well after the cuboid loading step for straightforward multi-drug testing. Since our platform makes the most of scarce tumor tissue, it can potentially be applied to human biopsies that preserve the human TME while minimizing animal testing.


Subject(s)
Antineoplastic Agents , Drug Screening Assays, Antitumor , Lab-On-A-Chip Devices , Humans , Animals , Antineoplastic Agents/pharmacology , Drug Screening Assays, Antitumor/instrumentation , Mice , Tumor Microenvironment/drug effects , Microfluidic Analytical Techniques/instrumentation , Equipment Design , Cell Line, Tumor , Neoplasms/drug therapy
2.
bioRxiv ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38585935

ABSTRACT

Present cancer disease models - typically based on cell cultures and animal models that lack the human tumor microenvironment (TME) - are extremely poor predictors of human disease outcomes. Microscale cancer models that combine the micromanipulation of tissues and fluids offer the exciting possibility of miniaturizing the drug testing workflow, enabling inexpensive, more efficient tests of high clinical biomimicry that maximize the use of scarce human tissue and minimize animal testing. Critically, these microscale models allow for precisely addressing the impact of the structural features of the heterogeneous TME to properly target and understand the contributions of these unique zones to therapeutic response. We have recently developed a precision slicing method that yields large numbers of cuboidal micro-tissues ("cuboids", ∼ (400 µm) 3 ) from a single tumor biopsy. Here we evaluate cuboids from syngeneic mouse tumor models and human tumors, which contain native immune cells, as models for drug and immunotherapy evaluation. We characterize relevant TME parameters, such as their cellular architecture (immune cells and vasculature), cytokine secretion, proteomics profiles, and their response to drug panels in multi-well arrays. Despite the cutting procedure and the time spent in culture (up to 7 days), the cuboids display strong functional responses such as cytokine and drug responses. Overall, our results suggest that cuboids make an excellent model for applications that require the TME, such as immunotherapy drug evaluations, including for clinical trials and personalized oncology approaches.

3.
PLoS Pathog ; 19(9): e1011169, 2023 09.
Article in English | MEDLINE | ID: mdl-37669313

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV) causes several human diseases including Kaposi's sarcoma (KS), a leading cause of cancer in Africa and in patients with AIDS. KS tumor cells harbor KSHV predominantly in a latent form, while typically <5% contain lytic replicating virus. Because both latent and lytic stages likely contribute to cancer initiation and progression, continued dissection of host regulators of this biological switch will provide insights into fundamental pathways controlling the KSHV life cycle and related disease pathogenesis. Several cellular protein kinases have been reported to promote or restrict KSHV reactivation, but our knowledge of these signaling mediators and pathways is incomplete. We employed a polypharmacology-based kinome screen to identify specific kinases that regulate KSHV reactivation. Those identified by the screen and validated by knockdown experiments included several kinases that enhance lytic reactivation: ERBB2 (HER2 or neu), ERBB3 (HER3), ERBB4 (HER4), MKNK2 (MNK2), ITK, TEC, and DSTYK (RIPK5). Conversely, ERBB1 (EGFR1 or HER1), MKNK1 (MNK1) and FRK (PTK5) were found to promote the maintenance of latency. Mechanistic characterization of ERBB2 pro-lytic functions revealed a signaling connection between ERBB2 and the activation of CREB1, a transcription factor that drives KSHV lytic gene expression. These studies provided a proof-of-principle application of a polypharmacology-based kinome screen for the study of KSHV reactivation and enabled the discovery of both kinase inhibitors and specific kinases that regulate the KSHV latent-to-lytic replication switch.


Subject(s)
Herpesvirus 8, Human , Sarcoma, Kaposi , Humans , Herpesvirus 8, Human/genetics , Polypharmacology , Africa , Cognition , Protein Serine-Threonine Kinases , Intracellular Signaling Peptides and Proteins , Receptor-Interacting Protein Serine-Threonine Kinases
4.
JCI Insight ; 8(13)2023 07 10.
Article in English | MEDLINE | ID: mdl-37219942

ABSTRACT

The incidence of early-onset colorectal cancer (EO-CRC) is rising and is poorly understood. Lifestyle factors and altered genetic background possibly contribute. Here, we performed targeted exon sequencing of archived leukocyte DNA from 158 EO-CRC participants, which identified a missense mutation at p.A98V within the proximal DNA binding domain of Hepatic Nuclear Factor 1 α (HNF1AA98V, rs1800574). The HNF1AA98V exhibited reduced DNA binding. To test function, the HNF1A variant was introduced into the mouse genome by CRISPR/Cas9, and the mice were placed on either a high-fat diet (HFD) or high-sugar diet (HSD). Only 1% of the HNF1A mutant mice developed polyps on normal chow; however, 19% and 3% developed polyps on the HFD and HSD, respectively. RNA-Seq revealed an increase in metabolic, immune, lipid biogenesis genes, and Wnt/ß-catenin signaling components in the HNF1A mutant relative to the WT mice. Mouse polyps and colon cancers from participants carrying the HNF1AA98V variant exhibited reduced CDX2 and elevated ß-catenin proteins. We further demonstrated decreased occupancy of HNF1AA98V at the Cdx2 locus and reduced Cdx2 promoter activity compared with WT HNF1A. Collectively, our study shows that the HNF1AA98V variant plus a HFD promotes the formation of colonic polyps by activating ß-catenin via decreasing Cdx2 expression.


Subject(s)
Colonic Neoplasms , beta Catenin , Animals , Mice , beta Catenin/genetics , beta Catenin/metabolism , Cell Communication , Colonic Neoplasms/metabolism , Diet, High-Fat , Wnt Signaling Pathway/genetics
5.
Sensors (Basel) ; 22(14)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35890861

ABSTRACT

The aim of local path planning for unmanned surface vehicles (USVs) is to avoid unknown dynamic or static obstacles. However, current relative studies have not fully considered the impact of ocean environmental factors which significantly increase the control difficulty and collision risk of USVs. Therefore, this work studies two ocean environmental factors, namely, wave and current, given that they both have a significant impact on USVs. Furthermore, we redesign a kinematic model of an USV and the evaluation function of a classical and practical local path planning method based on the dynamic window approach (DWA). As shown by the results of the simulations, the path length was impacted mainly by the intensity of the environmental load and slightly by the direction of the environmental load, but the navigation time was significantly influenced by both. Taking the situation in still water as a benchmark in terms of the intensity and direction of the environmental factors, the maximum change rates of the path length were 8.6% and 0.6%, respectively, but the maximum change rates of the navigating time were 17.9% and 25.6%, separately. In addition, the average calculation time of each cycle was only 0.0418 s, and the longest time did not exceed the simulation time corresponding to a single cycle of 0.1 s. This method has proven to be a good candidate for real-time local path planning of USVs since it systematically considers the impact of waves and currents on the navigation of USVs, and thus ensures that USVs can adjust to the planned path in time and avoid obstacles when navigating in the real ocean environment.


Subject(s)
Computer Simulation
6.
DNA Repair (Amst) ; 108: 103244, 2021 12.
Article in English | MEDLINE | ID: mdl-34768043

ABSTRACT

DNA Double strand breaks (DSBs) are highly hazardous to the cell, and are repaired predominantly via non-homologous end joining (NHEJ) and homologous recombination (HR). Using DSB-mimicking DNA templates, our proteomic studies identified a group of Sm core proteins of small nuclear ribonucleoproteins (snRNPs) as potential DSB-associated proteins. We further confirmed that these Sm proteins were recruited to laser-induced DNA damage sites, and co-localized with established DNA damage repair factors. Depletion of Sm-D3 or Sm-B induced accumulation of γ-H2AX, and impaired the repair efficiency of HR, but not NHEJ. Furthermore, disruption of Sm-D3 reduced the protein level of HR factors, especially RAD51 and CHK1, but caused no change in the expression of repair factors involved in NHEJ. Mechanistically, Sm-D3 proteins bound RAD51, suppressed the ubiquitination of RAD51, and mediated the stabilization of RAD51; Sm-D3 depletion particularly impacted the level of RAD51 and CHK1 on damaged chromatin. As such, our studies characterized a role of Sm proteins in HR repair, via a new mechanism that is distinct from their conventional functions in RNA processing and gene regulation, but consistent with their direct recruitment to DNA damage sites and association with repair factors.


Subject(s)
Recombinational DNA Repair , Ribonucleoproteins, Small Nuclear , DNA End-Joining Repair , DNA Repair , DNA-Binding Proteins/metabolism , Homologous Recombination , Proteomics , Rad51 Recombinase/metabolism , Ribonucleoproteins, Small Nuclear/genetics , Ribonucleoproteins, Small Nuclear/metabolism
7.
Elife ; 92020 01 17.
Article in English | MEDLINE | ID: mdl-31951198

ABSTRACT

DNA double strand breaks (DSBs) have detrimental effects on cell survival and genomic stability, and are related to cancer and other human diseases. In this study, we identified microtubule-depolymerizing kinesin Kif2C as a protein associated with DSB-mimicking DNA templates and known DSB repair proteins in Xenopus egg extracts and mammalian cells. The recruitment of Kif2C to DNA damage sites was dependent on both PARP and ATM activities. Kif2C knockdown or knockout led to accumulation of endogenous DNA damage, DNA damage hypersensitivity, and reduced DSB repair via both NHEJ and HR. Interestingly, Kif2C depletion, or inhibition of its microtubule depolymerase activity, reduced the mobility of DSBs, impaired the formation of DNA damage foci, and decreased the occurrence of foci fusion and resolution. Taken together, our study established Kif2C as a new player of the DNA damage response, and presented a new mechanism that governs DSB dynamics and repair.


DNA can be damaged in many ways, and a double strand break is one of the most dangerous. This occurs when both strands of the double helix snap at the same time, leaving two broken ends. When cells detect this kind of damage, they race to get it fixed as quickly as possible. Fixing these double strand breaks is thought to involve the broken ends being moved to 'repair centers' in the nucleus of the cell, but it was unclear how the broken ends were moved. One possibility was that the cells transport the broken ends along protein filaments called microtubules. Cells can assemble these track-like filaments on-demand to carry cargo attached to molecular motors called kinesins. However, this type of transport happens outside of the cell's nucleus, and while there are different kinesin proteins localized inside the nucleus, their roles are largely unknown. In an effort to understand how broken DNA ends are repaired, Zhu, Paydar et al. conducted experiments that simulated double strand breaks and examined the proteins that responded. The first set of experiments involved mixing cut pieces of DNA with extracts taken from frog eggs or human cells. Zhu, Paydar et al. found that one kinesin called Kif2C stuck to the DNA fragments, and attached to many proteins known to play a role in DNA damage repair. Kif2C had previously been shown to help separate the chromosomes during cell division. To find out more about its potential role in DNA repair, Zhu, Paydar et al. then used a laser to create breaks in the DNA of living human cells and tracked Kif2C movement. The kinesin arrived within 60 seconds of the DNA damage and appeared to transport the cut DNA ends to 'repair centers'. Getting rid of Kif2C, or blocking its activity, had dire effects on the cells' abilities to mobilize and repair breaks to its DNA. Without the molecular motor, fewer double strand breaks were repaired, and so DNA damage started to build up. Defects in double strand break repair happen in many human diseases, including cancer. Many cancer treatments damage the DNA of cancer cells, sometimes in combination with drugs that stop cells from building and using their microtubule transport systems. Understanding the new role of Kif2C in DNA damage repair could therefore help optimize these treatment combinations.


Subject(s)
DNA Breaks, Double-Stranded , DNA End-Joining Repair , Homologous Recombination , Kinesins/physiology , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Line, Tumor , Green Fluorescent Proteins/metabolism , Humans , Microtubules/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , Protein Binding , Xenopus
8.
Cancer Res ; 79(10): 2526-2535, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30733193

ABSTRACT

PARP, particularly PARP1, plays an essential role in the detection and repair of DNA single-strand breaks and double-strand breaks. PARP1 accumulates at DNA damage sites within seconds after DNA damage to catalyze the massive induction of substrate protein poly ADP-ribosylation (PARylation). However, the molecular mechanisms underlying the recruitment and activation of PARP1 in DNA repair are not fully understood. Here we show that phosphatase 1 nuclear targeting subunit 1 (PNUTS) is a robust binding partner of PARP1. Inhibition of PNUTS led to strong accumulation of endogenous DNA damage and sensitized the cellular response to a wide range of DNA-damaging agents, implicating PNUTS as an essential and multifaceted regulator of DNA repair. Recruitment of PNUTS to laser-induced DNA damage was similar to that of PARP1, and depletion or inhibition of PARP1 abrogated recruitment of PNUTS to sites of DNA damage. Conversely, PNUTS was required for efficient induction of substrate PARylation after DNA damage. PNUTS bound the BRCA1 C-terminal (BRCT) domain of PARP1 and was required for the recruitment of PARP1 to sites of DNA damage. Finally, depletion of PNUTS rendered cancer cells hypersensitive to PARP inhibition. Taken together, our study characterizes PNUTS as an essential partner of PARP1 in DNA repair and a potential drug target in cancer therapy. SIGNIFICANCE: These findings reveal PNUTS as an essential functional partner of PARP1 in DNA repair and suggest its inhibition as a potential therapeutic strategy in conjunction with DNA-damaging agents or PARP inhibitors.See related commentary by Murai and Pommier, p. 2460.


Subject(s)
DNA Repair/drug effects , Ribose , Adenosine Diphosphate , Phosphoric Monoester Hydrolases/genetics , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly(ADP-ribose) Polymerase Inhibitors
9.
Sci Rep ; 8(1): 2683, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29422626

ABSTRACT

The specific function of PP2A, a major serine/threonine phosphatase, is mediated by regulatory targeting subunits, such as members of the B55 family. Although implicated in cell division and other pathways, the specific substrates and functions of B55 targeting subunits are largely undefined. In this study we identified over 100 binding proteins of B55α and B55ß in Xenopus egg extracts that are involved in metabolism, mitochondria function, molecular trafficking, cell division, cytoskeleton, DNA replication, DNA repair, and cell signaling. Among the B55α and B55ß-associated proteins were numerous mitotic regulators, including many substrates of CDK1. Consistently, upregulation of B55α accelerated M-phase exit and inhibited M-phase entry. Moreover, specific substrates of CDK2, including factors of DNA replication and chromatin remodeling were identified within the interactomes of B55α and B55ß, suggesting a role for these phosphatase subunits in DNA replication. In particular, we confirmed in human cells that B55α binds RPA and mediates the dephosphorylation of RPA2. The B55-RPA association is disrupted after replication stress, consistent with the induction of RPA2 phosphorylation. Thus, we report here a new mechanism that accounts for both how RPA phosphorylation is modulated by PP2A and how the phosphorylation of RPA2 is abruptly induced after replication stress.


Subject(s)
Protein Phosphatase 2/metabolism , Replication Protein A/metabolism , Animals , CDC2 Protein Kinase/metabolism , Cell Cycle/physiology , Chromosome Structures , Mitosis/physiology , Phosphorylation , Protein Interaction Maps , Protein Subunits/metabolism , Proteolysis , Replication Protein A/physiology , Xenopus Proteins/metabolism , Xenopus laevis/metabolism
10.
Nucleic Acids Res ; 45(18): 10583-10594, 2017 Oct 13.
Article in English | MEDLINE | ID: mdl-28985363

ABSTRACT

DNA-dependent protein kinase catalytic subunit (DNA-PKcs) plays a key role in mediating non-homologous end joining (NHEJ), a major repair pathway for DNA double-strand breaks (DSBs). The activation, function and dynamics of DNA-PKcs is regulated largely by its reversible phosphorylation at numerous residues, many of which are targeted by DNA-PKcs itself. Interestingly, these DNA-PKcs phosphorylation sites function in a distinct, and sometimes opposing manner, suggesting that they are differentially regulated via complex actions of both kinases and phosphatases. In this study we identified several phosphatase subunits as potential DSB-associated proteins. In particular, protein phosphatase 1 (PP1) is recruited to a DSB-mimicking substrate in Xenopus egg extracts and sites of laser microirradiation in human cells. Depletion of PP1 impairs NHEJ in both Xenopus egg extracts and human cells. PP1 binds multiple motifs of DNA-PKcs, regulates DNA-PKcs phosphorylation, and is required for DNA-PKcs activation after DNA damage. Interestingly, phosphatase 1 nuclear targeting subunit (PNUTS), an inhibitory regulator of PP1, is also recruited to DNA damage sites to promote NHEJ. PNUTS associates with the DNA-PK complex and is required for DNA-PKcs phosphorylation at Ser-2056 and Thr-2609. Thus, PNUTS and PP1 together fine-tune the dynamic phosphorylation of DNA-PKcs after DNA damage to mediate NHEJ.


Subject(s)
DNA Breaks, Double-Stranded , DNA End-Joining Repair , DNA-Activated Protein Kinase/metabolism , DNA-Binding Proteins/metabolism , Nuclear Proteins/metabolism , Protein Phosphatase 1/metabolism , RNA-Binding Proteins/metabolism , Animals , HeLa Cells , Humans , Ku Autoantigen/metabolism , Phosphorylation , Xenopus
11.
Sci Rep ; 6: 27797, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27324260

ABSTRACT

Non-homologous end joining (NHEJ) is a major DNA double-strand break (DSB) repair mechanism. We characterized here a series of plasmid-based DSB templates that were repaired in Xenopus egg extracts via the canonical, Ku-dependent NHEJ pathway. We showed that the template with compatible ends was efficiently repaired without end processing, in a manner that required the kinase activity of DNA-PKcs but not ATM. Moreover, non-compatible ends with blunt/3'-overhang, blunt/5'-overhang, and 3'-overhang/5'-overhang were predominantly repaired with fill-in and ligation without the removal of end nucleotides. In contrast, 3'-overhang/3'-overhang and 5'-overhang/5'-overhang templates were processed by resection of 3-5 bases and fill-in of 1-4 bases prior to end ligation. Therefore, the NHEJ machinery exhibited a strong preference for precise repair; the presence of neither non-compatible ends nor protruding single strand DNA sufficiently warranted the action of nucleases. ATM was required for the efficient repair of all non-compatible ends including those repaired without end processing by nucleases, suggesting its role beyond phosphorylation and regulation of Artemis. Finally, dephosphorylation of the 5'-overhang/3'-overhang template reduced the efficiency of DNA repair without increasing the risk of end resection, indicating that end protection via prompt end ligation is not the sole mechanism that suppresses the action of nucleases.


Subject(s)
DNA End-Joining Repair , Oocytes/metabolism , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Female , Xenopus
12.
World J Microbiol Biotechnol ; 31(10): 1641-6, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26164057

ABSTRACT

Fermentation at higher temperatures can potentially reduce the cooling cost in large-scale fermentation and reduce the contamination risk. Thus, the thermotolerant yeast, Kluyveromyces marxianus, which can grow and ferment at elevated temperatures, is a promising biotechnological tool for future applications. However, the promoters used in K. marxianus are not well characterized, especially at elevated temperatures, which is important in efficient metabolic pathway construction. In this study, six constitutive promoters (P(TDH3), P(PGK), and P(ADH1) from both Saccharomyces cerevisiae and K. marxianus) were evaluated in K. marxianus through the heterologous expression of the KlLAC4, GUSA, and SH BLE genes at various temperatures, with various carbon sources and oxygen conditions. The expression was evaluated at the transcription and protein level using real-time PCR and protein activity determination to eliminate the effect of heterologous protein stability. While the transcription of all the promoters decreased at higher temperatures, the order of their promoting strength at various temperatures with glucose as the carbon source was P(KmPGK) > P(KmTDH3) > P(ScPGK) > P(ScTDH3) > P(KmADH1) > P(ScADH1). When glycerol or xylose was supplied as the carbon source at 42 °C, the order of promoter strength was P(KmPGK) > P(ScPGK) > P(KmADH1) > P(ScADH1) > P(ScTDH3) > P(KmTDH3). The promoter activity of P TDH3 decreased significantly, while the promoter activity of both of the P(ADH1) promoters increased. Oxygen conditions had non-significant effect. The results of this study provide important information for fine-tuned pathway construction for the metabolic engineering of K. marxianus.


Subject(s)
Gene Expression/radiation effects , Kluyveromyces/genetics , Kluyveromyces/radiation effects , Promoter Regions, Genetic , Gene Expression Profiling , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Saccharomyces cerevisiae/genetics , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...