Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Biol Eng Comput ; 60(12): 3447-3460, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36197639

ABSTRACT

The precise assessment of cognitive load during a learning phase is an important pathway to improving students' learning efficiency and performance. Physiological measures make it possible to continuously monitor learners' cognitive load in remote learning during the COVID-19 outbreak. However, maintaining a good balance between performance and computational cost is still a major challenge in advancing cognitive load recognition technology to real-world applications. This paper introduced an adaptive feature recalibration (AFR) convolutional neural network to overcome this challenge by capturing the most discriminative physiological features (EEG and eye-tracking). The results revealed that the optimal average classification accuracy of the feature combination obtained by the AFR method reached 95.56% with only 60 feature dimensions. Additionally, compared with the best result of the conventional correlation-based feature selection (CFS) method, the introduced AFR algorithm achieved higher accuracy and cheaper computational cost, as well as a 2.06% improvement in accuracy and a 51.21% reduction in feature dimension, which is more in line with the requirements of low delay and real-time performance in practical BCI applications.


Subject(s)
COVID-19 , Electroencephalography , Humans , Electroencephalography/methods , Feasibility Studies , Neural Networks, Computer , Cognition
2.
Front Psychol ; 13: 889427, 2022.
Article in English | MEDLINE | ID: mdl-35769742

ABSTRACT

We aimed to investigate the relationship between emotional activity and cognitive load during multimedia learning from an emotion dynamics perspective using electroencephalography (EEG) signals. Using a between-subjects design, 42 university students were randomly assigned to two video lecture conditions (color-coded vs. grayscale). While the participants watched the assigned video, their EEG signals were recorded. After processing the EEG signals, we employed the correlation-based feature selector (CFS) method to identify emotion-related subject-independent features. We then put these features into the Isomap model to obtain a one-dimensional trajectory of emotional changes. Next, we used the zero-crossing rate (ZCR) as the quantitative characterization of emotional changes ZCR EC . Meanwhile, we extracted cognitive load-related features to analyze the degree of cognitive load (CLI). We employed a linear regression fitting method to study the relationship between ZCR EC and CLI. We conducted this study from two perspectives. One is the frequency domain method (wavelet feature), and the other is the non-linear dynamic method (entropy features). The results indicate that emotional activity is negatively associated with cognitive load. These findings have practical implications for designing video lectures for multimedia learning. Learning material should reduce learners' cognitive load to keep their emotional experience at optimal levels to enhance learning.

3.
Front Psychol ; 12: 773328, 2021.
Article in English | MEDLINE | ID: mdl-34925175

ABSTRACT

In the present study, we tested the effectiveness of color coding on the programming learning of students who were learning from video lectures. Effectiveness was measured using multimodal physiological measures, combining eye tracking and electroencephalography (EEG). Using a between-subjects design, 42 university students were randomly assigned to two video lecture conditions (color-coded vs. grayscale). The participants' eye tracking and EEG signals were recorded while watching the assigned video, and their learning performance was subsequently assessed. The results showed that the color-coded design was more beneficial than the grayscale design, as indicated by smaller pupil diameter, shorter fixation duration, higher EEG theta and alpha band power, lower EEG cognitive load, and better learning performance. The present findings have practical implications for designing slide-based programming learning video lectures; slides should highlight the format of the program code using color coding.

SELECTION OF CITATIONS
SEARCH DETAIL
...