Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
ACS Appl Mater Interfaces ; 16(26): 33021-33037, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38888460

ABSTRACT

Hypoxia can lead to liver fibrosis and severely limits the efficacy of photodynamic therapy (PDT). Herein, carbon nitride (CN)-based hybrid nanoparticles (NPs) VPSGCNs@TSI for light-driven water splitting were utilized to solve this problem. CNs were doped with selenide glucose (Se-glu) to enhance their red/NIR region absorption. Then, vitamin A-poly(ethylene glycol) (VA-PEG) fragments and aggregation-induced emission (AIE) photosensitizers TSI were introduced into Se-glu-doped CN NPs (VPSGCNs) to construct VPSGCNs@TSI NPs. The introduction of VA-PEG fragments enhanced the targeting of the NPs to activated hepatic stellate cells (HSCs) and reduced their toxicity to ordinary liver cells. VPSGCN units could trigger water splitting to generate O2 under 660 nm laser irradiation, improve the hypoxic environment of the fibrosis site, downregulate HIF-1α expression, and activate HSC ferroptosis via the HIF-1α/SLC7A11 pathway. In addition, generated O2 could also increase the reactive oxygen species (ROS) production of TSI units in a hypoxic environment, thereby completely reversing hypoxia-triggered PDT resistance to enhance the PDT effect. The combination of water-splitting materials and photodynamic materials showed a 1 + 1 > 2 effect in increasing oxygen levels in liver fibrosis, promoting ferroptosis of activated HSCs and reversing PDT resistance caused by hypoxia.


Subject(s)
Ferroptosis , Hepatic Stellate Cells , Liver Cirrhosis , Nanoparticles , Photochemotherapy , Nanoparticles/chemistry , Animals , Ferroptosis/drug effects , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Mice , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Nitriles/chemistry , Nitriles/pharmacology , Humans , Hypoxia/drug therapy , Hypoxia/metabolism , Reactive Oxygen Species/metabolism
2.
Nat Prod Res ; 38(10): 1719-1726, 2024 May.
Article in English | MEDLINE | ID: mdl-37265118

ABSTRACT

A new lignan, named pouzolignan P (1), together with 14 known ones (2 - 15) were isolated from the roots of Pouzolzia zeylanica (L.) Benn. Their structures were deduced based on the detailed spectroscopic analysis. All the isolates were evaluated for their inhibitory activities toward the ATP citrate lyase (ACLY). Among them, four lignans, isopouzolignan K (3), gnemontanins E (5), gnetuhainin I (6), and styraxlignolide D (15) showed excellent ACLY inhibitory effect with IC50 values of 9.06, 0.59, 2.63, and 7.62 µM, respectively. These compounds were further evaluated for their cholesterol-lowing effects on ox-LDL-induced high-cholesterol HepG2 cells. Compound 15 emerges as the most potent ACLY inhibitor, which significantly decreased the TC level in a dose-dependent manner. In addition, molecular docking simulations elucidated that 15 formed a strong hydrogen-bond interaction with Glu599 of ACLY, which was an important site responsible for the enzyme catalytic activity.


Subject(s)
ATP Citrate (pro-S)-Lyase , Lignans , ATP Citrate (pro-S)-Lyase/chemistry , Molecular Docking Simulation , Enzyme Inhibitors/pharmacology , Cholesterol
3.
PLoS One ; 17(10): e0276285, 2022.
Article in English | MEDLINE | ID: mdl-36288343

ABSTRACT

Protein posttranslational modifications (PTMs) by O-GlcNAc globally rise during pressure-overload hypertrophy (POH). However, a major knowledge gap exists on the specific proteins undergoing changes in O-GlcNAc levels during POH primarily because this PTM is low abundance and easily lost during standard mass spectrometry (MS) conditions used for protein identification. Methodologies have emerged to enrich samples for O-GlcNAcylated proteins prior to MS analysis. Accordingly, our goal was to identify the specific proteins undergoing changes in O-GlcNAc levels during POH. We used C57/Bl6 mice subjected to Sham or transverse aortic constriction (TAC) to create POH. From the hearts, we labelled the O-GlcNAc moiety with tetramethylrhodamine azide (TAMRA) before sample enrichment by TAMRA immunoprecipitation (IP). We used LC-MS/MS to identify and quantify the captured putative O-GlcNAcylated proteins. We identified a total of 700 putative O-GlcNAcylated proteins in Sham and POH. Two hundred thirty-three of these proteins had significantly increased enrichment in POH over Sham suggesting higher O-GlcNAc levels whereas no proteins were significantly decreased by POH. We examined two MS identified metabolic enzymes, CPT1B and the PDH complex, to validate by immunoprecipitation. We corroborated increased O-GlcNAc levels during POH for CPT1B and the PDH complex. Enzyme activity assays suggests higher O-GlcNAcylation increases CPT1 activity and decreases PDH activity during POH. In summary, we generated the first comprehensive list of proteins with putative changes in O-GlcNAc levels during POH. Our results demonstrate the large number of potential proteins and cellular processes affected by O-GlcNAc and serve as a guide for testing specific O-GlcNAc-regulated mechanisms during POH.


Subject(s)
Acetylglucosamine , Azides , Animals , Mice , Acetylglucosamine/metabolism , Chromatography, Liquid , Hypertrophy , Protein Processing, Post-Translational , Proteins/metabolism , Tandem Mass Spectrometry/methods
4.
Physiol Rep ; 9(15): e14965, 2021 08.
Article in English | MEDLINE | ID: mdl-34337900

ABSTRACT

Protein posttranslational modifications (PTMs) by O-linked ß-N-acetylglucosamine (O-GlcNAc) rise during pressure-overload hypertrophy (POH) to affect hypertrophic growth. The hexosamine biosynthesis pathway (HBP) branches from glycolysis to make the moiety for O-GlcNAcylation. It is speculated that greater glucose utilization during POH augments HBP flux to increase O-GlcNAc levels; however, recent results suggest glucose availability does not primarily regulate cardiac O-GlcNAc levels. We hypothesize that induction of key enzymes augment protein O-GlcNAc levels primarily during active myocardial hypertrophic growth and remodeling with early pressure overload. We further speculate that downregulation of protein O-GlcNAcylation inhibits ongoing hypertrophic growth during prolonged pressure overload with established hypertrophy. We used transverse aortic constriction (TAC) to create POH in C57/Bl6 mice. Experimental groups were sham, 1-week TAC (1wTAC) for early hypertrophy, or 6-week TAC (6wTAC) for established hypertrophy. We used western blots to determine O-GlcNAc regulation. To assess the effect of increased protein O-GlcNAcylation with established hypertrophy, mice received thiamet-g (TG) starting 4 weeks after TAC. Protein O-GlcNAc levels were significantly elevated in 1wTAC versus Sham with a fall in 6wTAC. OGA, which removes O-GlcNAc from proteins, fell in 1wTAC versus sham. GFAT is the rate-limiting HBP enzyme and the isoform GFAT1 substantially rose in 1wTAC. With established hypertrophy, TG increased protein O-GlcNAc levels but did not affect cardiac mass. In summary, protein O-GlcNAc levels vary during POH with elevations occurring during active hypertrophic growth early after TAC. O-GlcNAc levels appear to be regulated by changes in key enzyme levels. Increasing O-GlcNAc levels during established hypertrophy did not restart hypertrophic growth.


Subject(s)
Biosynthetic Pathways , Cardiomegaly/pathology , Glycoproteins/chemistry , Glycoproteins/metabolism , Pressure , Protein Processing, Post-Translational , Animals , Cardiomegaly/etiology , Cardiomegaly/metabolism , Glycoproteins/genetics , Glycosylation , Mice , Mice, Inbred C57BL
5.
Front Biosci (Landmark Ed) ; 26(6): 102-113, 2021 05 30.
Article in English | MEDLINE | ID: mdl-34162039

ABSTRACT

Notwithstanding previous studies have proved the anti-apoptotic effect of Bcl-2 associated athanogene3 (BAG3) in myocardium, the structural domains PXXP and BAG responsible for its protection are not reformed. Since BAG3 in cardiomyocytes is a new target for inhibiting apoptosis induced by hypoxia/reoxygenation (H/R) stress, we demonstrated that over-expression of BAG3 reduced the injury induced by H/R in either neonatal or adult rat cardiomyocytes (NRCMs and ARCMs, respectively) and PXXP and BAG domains play an important role in cellular protection in H/R stress. Apoptosis in cardiomyocytes induced by hypoxia-reperfusion was evaluated with propidium iodide (PI) staining, cleaved caspase-3, and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining in cultured NRCMS. Either increasing expression of BAG3 or its mutants was performed to manipulate the level of BAG3. Co-immunoprecipitation (Co-IP) was used to demonstrate the complex that BAG3 is binding to HSC70 and JNK. PXXP and BAG domains of BAG3 played an essential role in BAG3 attenuating cardiomyocytes apoptosis induced by H/R through the JNK signalling pathway. The cellular protection of BAG3 with its structural domain PXXP or BAG is associated with the binding with HSC70 and JNK. These results showed that the protective effect of BAG3 on apoptosis induced by H/R stress is closely related to its structural domains PXXP and BAG. The mechanism may provide a new therapeutic strategy for the patients suffering from ischemic cardiomyopathy and may be a critical role of its PXXP and BAG3 domains.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , HSC70 Heat-Shock Proteins/metabolism , MAP Kinase Kinase 4/metabolism , Myocytes, Cardiac/metabolism , Protein Domains , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Animals , Apoptosis Regulatory Proteins/chemistry , Apoptosis Regulatory Proteins/genetics , Cells, Cultured , Protein Conformation , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley
7.
Proteome Sci ; 18(1): 11, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33372611

ABSTRACT

BACKGROUND: Sex and age have substantial influence on thyroid function. Sex influences the risk and clinical expression of thyroid disorders (TDs), with age a proposed trigger for the development of TDs. Cardiac function is affected by thyroid hormone levels with gender differences. Accordingly, we investigated the proteomic changes involved in sex based cardiac responses to thyroid dysfunction in elderly mice. METHODS: Aged (18-20 months) male and female C57BL/6 mice were fed diets to create euthyroid, hypothyroid, or hyperthyroid states. Serial echocardiographs were performed to assess heart function. Proteomic changes in cardiac protein profiles were assessed by 2-D DIGE and LC-MS/MS, and a subset confirmed by immunoblotting. RESULTS: Serial echocardiographs showed ventricular function remained unchanged regardless of treatment. Heart rate and size increased (hyperthyroid) or decreased (hypothyroid) independent of sex. Pairwise comparison between the six groups identified 55 proteins (≥ 1.5-fold difference and p < 0.1). Compared to same-sex controls 26/55 protein changes were in the female hypothyroid heart, whereas 15/55 protein changes were identified in the male hypothyroid, and male and female hyperthyroid heart. The proteins mapped to oxidative phosphorylation, tissue remodeling and inflammatory response pathways. CONCLUSION: We identified both predicted and novel proteins with gender specific differential expression in response to thyroid hormone status, providing a catalogue of proteins associated with thyroid dysfunction. Pursuit of these proteins and their involvement in cardiac function will expand our understanding of mechanisms involved in sex-based cardiac response to thyroid dysfunction.

8.
Stem Cell Res Ther ; 11(1): 417, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32988411

ABSTRACT

BACKGROUND: Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) show tremendous promise for cardiac regeneration, but the successful development of hESC-CM-based therapies requires improved tools to investigate their electrical behavior in recipient hearts. While optical voltage mapping is a powerful technique for studying myocardial electrical activity ex vivo, we have previously shown that intra-cardiac hESC-CM grafts are not labeled by conventional voltage-sensitive fluorescent dyes. We hypothesized that the water-soluble voltage-sensitive dye di-2-ANEPEQ would label engrafted hESC-CMs and thereby facilitate characterization of graft electrical function and integration. METHODS: We developed and validated a novel optical voltage mapping strategy based on the simultaneous imaging of the calcium-sensitive fluorescent protein GCaMP3, a graft-autonomous reporter of graft activation, and optical action potentials (oAPs) derived from di-2-ANEPEQ, which labels both graft and host myocardium. Cardiomyocytes from three different GCaMP3+ hESC lines (H7, RUES2, or ESI-17) were transplanted into guinea pig models of subacute and chronic infarction, followed by optical mapping at 2 weeks post-transplantation. RESULTS: Use of a water-soluble voltage-sensitive dye revealed pro-arrhythmic properties of GCaMP3+ hESC-CM grafts from all three lines including slow conduction velocity, incomplete host-graft coupling, and spatially heterogeneous patterns of activation that varied beat-to-beat. GCaMP3+ hESC-CMs from the RUES2 and ESI-17 lines both showed prolonged oAP durations both in vitro and in vivo. Although hESC-CMs partially remuscularize the injured hearts, histological evaluation revealed immature graft structure and impaired gap junction expression at this early timepoint. CONCLUSION: Simultaneous imaging of GCaMP3 and di-2-ANEPEQ allowed us to acquire the first unambiguously graft-derived oAPs from hESC-CM-engrafted hearts and yielded critical insights into their arrhythmogenic potential and line-to-line variation.


Subject(s)
Human Embryonic Stem Cells , Myocytes, Cardiac , Animals , Cell Differentiation , Embryonic Stem Cells , Guinea Pigs , Myocardium
9.
J Biol Chem ; 295(7): 2018-2033, 2020 02 14.
Article in English | MEDLINE | ID: mdl-31915250

ABSTRACT

The hexosamine biosynthesis pathway (HBP) branches from glycolysis and forms UDP-GlcNAc, the moiety for O-linked ß-GlcNAc (O-GlcNAc) post-translational modifications. An inability to directly measure HBP flux has hindered our understanding of the factors regulating protein O-GlcNAcylation. Our goals in this study were to (i) validate a LC-MS method that assesses HBP flux as UDP-GlcNAc (13C)-molar percent enrichment (MPE) and concentration and (ii) determine whether glucose availability or workload regulate cardiac HBP flux. For (i), we perfused isolated murine working hearts with [U-13C6]glucosamine (1, 10, 50, or 100 µm), which bypasses the rate-limiting HBP enzyme. We observed a concentration-dependent increase in UDP-GlcNAc levels and MPE, with the latter reaching a plateau of 56.3 ± 2.9%. For (ii), we perfused isolated working hearts with [U-13C6]glucose (5.5 or 25 mm). Glycolytic efflux doubled with 25 mm [U-13C6]glucose; however, the calculated HBP flux was similar among the glucose concentrations at ∼2.5 nmol/g of heart protein/min, representing ∼0.003-0.006% of glycolysis. Reducing cardiac workload in beating and nonbeating Langendorff perfusions had no effect on the calculated HBP flux at ∼2.3 and 2.5 nmol/g of heart protein/min, respectively. To the best of our knowledge, this is the first direct measurement of glucose flux through the HBP in any organ. We anticipate that these methods will enable foundational analyses of the regulation of HBP flux and protein O-GlcNAcylation. Our results suggest that in the healthy ex vivo perfused heart, HBP flux does not respond to acute changes in glucose availability or cardiac workload.


Subject(s)
Acetylglucosamine/metabolism , Glucose/metabolism , Myocardium/metabolism , Protein Processing, Post-Translational/genetics , Animals , Biosynthetic Pathways/genetics , Glycolysis/genetics , Glycosylation , Heart/drug effects , Heart/physiopathology , Hexosamines/biosynthesis , Hexosamines/genetics , Humans , Mice , Myocardium/pathology
10.
Acta Pharmacol Sin ; 41(2): 198-207, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31515529

ABSTRACT

Evidence to date suggests that ß-arrestins act beyond their role as adapter proteins. Arginine vasopressin (AVP) may be a factor in inflammation and fibrosis in the pathogenesis of heart failure. In the present study we investigated the effect of AVP on inflammatory cytokine IL-6 production in murine hearts and the impact of ß-arrestin 2-dependent signaling on AVP-induced IL-6 production. We found that administration of AVP (0.5 U/kg, iv) markedly increased the levels of IL-6 mRNA in rat hearts with the maximum level occurred at 6 h. In ß-arrestin 2 KO mouse hearts, deletion of ß-arrestin 2 decreased AVP-induced IL-6 mRNA expression. We then performed in vitro experiments in adult rat cardiac fibroblasts (ARCFs). We found that AVP (10-9-10-6 M) dose-dependently increased the expression of IL-6 mRNA and protein, activation of NF-κB signaling and ERK1/2 phosphorylation, whereas knockdown of ß-arrestin 2 blocked AVP-induced IL-6 increase, NF-κB activation and ERK1/2 phosphorylation. Pharmacological blockade of ERK1/2 using PD98059 diminished AVP-induced NF-κB activation and IL-6 production. The selective V1A receptor antagonist SR49059 effectively blocked AVP-induced NF-κB phosphorylation and activation as well as IL-6 expression in ARCFs. In AVP-treated mice, pre-injection of SR49059 (2 mg/kg, iv) abolished AVP-induced NF-κB activation and IL-6 production in hearts. The above results suggest that AVP induces IL-6 induction in murine hearts via the V1A receptor-mediated ß-arrestin2/ERK1/2/NF-κB pathway, thus reveal a novel mechanism of myocardial inflammation in heart failure involving the V1A/ß-arrestin 2/ERK1/2/NF-κB signaling pathway.


Subject(s)
Arginine Vasopressin/pharmacology , Heart/physiopathology , Interleukin-6/metabolism , beta-Arrestin 2/genetics , Animals , Arginine Vasopressin/administration & dosage , Dose-Response Relationship, Drug , Fibroblasts/metabolism , Gene Knockdown Techniques , Heart Failure/physiopathology , Male , Mice , Mice, Knockout , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , NF-kappa B/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Vasopressin/metabolism
11.
J Am Heart Assoc ; 8(11): e011260, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31131693

ABSTRACT

Background Protein posttranslational modifications by O-linked ß-N-acetylglucosamine (O-GlcNAc) increase with cardiac hypertrophy, yet the functional effects of these changes are incompletely understood. In other organs, O-GlcNAc promotes adaptation to acute physiological stressors; however, prolonged O-GlcNAc elevations are believed to be detrimental. We hypothesize that early O-GlcNAcylation improves cardiac function during initial response to pressure overload hypertrophy, but that sustained elevations during established pathological hypertrophy negatively impact cardiac function by adversely affecting calcium handling proteins. Methods and Results Transverse aortic constriction or sham surgeries were performed on littermate controls or cardiac-specific, inducible O-GlcNAc transferase knockout (OGTKO) mice to reduce O-GlcNAc levels. O-GlcNAc transferase deficiency was induced at different times. To evaluate the initial response to pressure overload, OGTKO was completed preoperatively and mice were followed for 2 weeks post-surgery. To assess prolonged O-GlcNAcylation during established hypertrophy, OGTKO was performed starting 18 days after surgery and mice were followed until 6 weeks post-surgery. In both groups, OGTKO with transverse aortic constriction caused significant left ventricular dysfunction. OGTKO did not affect levels of the calcium handling protein SERCA2a. OGTKO reduced phosphorylation of phospholamban and cardiac troponin I, which would negatively impact cardiac function. O-GlcNAcylation of protein kinase A catalytic subunit, a kinase for phospholamban, decreased with OGTKO. Conclusions O-GlcNAcylation promotes compensated cardiac function in both early and established pathological hypertrophy. We identified a novel O-GlcNAcylation of protein kinase A catalytic subunit, which may regulate calcium handling and cardiac function.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Hypertrophy, Left Ventricular/enzymology , Myocardium/enzymology , N-Acetylglucosaminyltransferases/metabolism , Ventricular Dysfunction, Left/enzymology , Ventricular Function, Left , Ventricular Remodeling , Animals , Calcium Signaling , Calcium-Binding Proteins/metabolism , Disease Models, Animal , Glycosylation , Hypertrophy, Left Ventricular/diagnostic imaging , Hypertrophy, Left Ventricular/pathology , Hypertrophy, Left Ventricular/physiopathology , Male , Mice, Knockout , Myocardium/pathology , N-Acetylglucosaminyltransferases/deficiency , N-Acetylglucosaminyltransferases/genetics , Phosphorylation , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Time Factors , Troponin I/metabolism , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/pathology , Ventricular Dysfunction, Left/physiopathology
12.
Hypoxia (Auckl) ; 5: 67-74, 2017.
Article in English | MEDLINE | ID: mdl-28770234

ABSTRACT

Chronic mountain sickness (CMS) is estimated at 1.2% in Tibetans living at the Qinghai-Tibetan Plateau. Eighteen single-nucleotide polymorphisms (SNPs) from nine nuclear genes that have an association with CMS in Tibetans have been analyzed by using pairwise linkage disequilibrium (LD). The SNPs included are the angiotensin-converting enzyme (rs4340), the angiotensinogen (rs699), and the angiotensin II type 1 receptor (AGTR1) (rs5186) from the renin-angiotensin system. A low-density lipoprotein apolipoprotein B (rs693) SNP was also included. From the hypoxia-inducible factor oxygen signaling pathway, the endothetal Per-Arnt-Sim domain protein 1 (EPAS1) and the egl nine homolog 1 (ENGL1) (rs480902) SNPs were included in the study. SNPs from the vascular endothelial growth factor (VEGF) signaling pathway included are the v-akt murine thymoma viral oncogene homolog 3 (rs4590656 and rs2291409), the endothelial cell nitric oxide synthase 3 (rs1007311 and rs1799983), and the (VEGFA) (rs699947, rs34357231, rs79469752, rs13207351, rs28357093, rs1570360, rs2010963, and rs3025039). An increase in LD occurred in 40 pairwise comparisons, whereas a decrease in LD was found in 55 pairwise comparisons between the controls and CMS patients. These changes were found to occur within and between signaling pathways, which suggests that there is an interaction between SNP alleles from different areas of the genome that affect CMS.

13.
Proc Natl Acad Sci U S A ; 112(21): E2785-94, 2015 May 26.
Article in English | MEDLINE | ID: mdl-25964336

ABSTRACT

In metazoans, transition from fetal to adult heart is accompanied by a switch in energy metabolism-glycolysis to fatty acid oxidation. The molecular factors regulating this metabolic switch remain largely unexplored. We first demonstrate that the molecular signatures in 1-year (y) matured human embryonic stem cell-derived cardiomyocytes (hESC-CMs) are similar to those seen in in vivo-derived mature cardiac tissues, thus making them an excellent model to study human cardiac maturation. We further show that let-7 is the most highly up-regulated microRNA (miRNA) family during in vitro human cardiac maturation. Gain- and loss-of-function analyses of let-7g in hESC-CMs demonstrate it is both required and sufficient for maturation, but not for early differentiation of CMs. Overexpression of let-7 family members in hESC-CMs enhances cell size, sarcomere length, force of contraction, and respiratory capacity. Interestingly, large-scale expression data, target analysis, and metabolic flux assays suggest this let-7-driven CM maturation could be a result of down-regulation of the phosphoinositide 3 kinase (PI3K)/AKT protein kinase/insulin pathway and an up-regulation of fatty acid metabolism. These results indicate let-7 is an important mediator in augmenting metabolic energetics in maturing CMs. Promoting maturation of hESC-CMs with let-7 overexpression will be highly significant for basic and applied research.


Subject(s)
MicroRNAs/genetics , MicroRNAs/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Adult , Cell Differentiation/genetics , Cell Line , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Energy Metabolism , Gene Expression Regulation, Developmental , Humans , Models, Cardiovascular , Myocardial Contraction , Myocytes, Cardiac/physiology , Signal Transduction , Tissue Engineering , Up-Regulation
14.
Clin Exp Pharmacol Physiol ; 41(12): 976-85, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25224648

ABSTRACT

Our previous studies showed that protein phosphatase 1γ (PP1γ) exacerbates cardiomyocyte apoptosis through promotion of Ca(2+)/calmodulin-dependent protein kinase δ (CaMKIIδ) splicing. Here we determine the role of PP1γ in abdominal aorta constriction-induced hypertrophy and remodelling in rat hearts. Systolic blood pressure and echocardiographic measurements were used to evaluate the model of cardiac hypertrophy. Sirius red staining and invasive haemodynamic/cardiac index measurements were used to evaluate the effects of PP1γ or inhibitor 1 of PP1 transfection. Western blot, reverse transcription polymerase chain reaction and co-immunoprecipitation were applied to investigate the molecular mechanisms. Transfection of PP1γ increased the value of the heart mass index, left ventricular mass index and cardiac fibrosis, and simultaneously decreased the value of maximal left ventricular pressure increase and decline rate, ejection fraction, fractional shortening, and left ventricular end-diastolic pressure, as well as left ventricular systolic pressure. Transfection of inhibitor 1 of PP1, however, showed opposite effects on the aforementioned indexes. Overexpression of PP1γ potentiated CaMKIIδC production and decreased CaMKIIδB production in the hypertrophic heart. In contrast, inhibition of PP1γ re-balanced the CaMKIIδ splicing. Furthermore, CaMKII activity was found to be augmented or attenuated by PP1γ overexpression or inhibition, respectively. Further mechanistic studies showed that abdominal aorta constriction stress specifically increased the association of alternative splicing factor with PP1γ, but not with PP1ß. Overexpression of PP1γ, but not inhibitor 1 of PP1, further potentiated this association. These results suggest that PP1γ alters the cardiac hypertrophy and remodelling likely through promotion of the alternative splicing factor-mediated splicing of CaMKIIδ.


Subject(s)
Alternative Splicing/physiology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium/metabolism , Calmodulin/metabolism , Heart Failure/metabolism , Protein Phosphatase 1/antagonists & inhibitors , Protein Phosphatase 1/metabolism , Animals , Apoptosis/physiology , Cardiomegaly/metabolism , Heart Failure/physiopathology , Heart Ventricles/metabolism , Male , Myocytes, Cardiac/metabolism , Rats , Rats, Sprague-Dawley
15.
Methods Mol Biol ; 1181: 229-47, 2014.
Article in English | MEDLINE | ID: mdl-25070341

ABSTRACT

Cardiomyocytes derived from human pluripotent stem cells show tremendous promise for the replacement of myocardium and contractile function lost to infarction. However, until recently, no methods were available to directly determine whether these stem cell-derived grafts actually couple with host myocardium and fire synchronously following transplantation in either intact or injured hearts. To resolve this uncertainty, our group has developed techniques for the intravital imaging of hearts engrafted with stem cell-derived cardiomyocytes that have been modified to express the genetically encoded protein calcium sensor, GCaMP. When combined with the simultaneously recorded electrocardiogram, this protocol allows one to make quantitative assessments as to the presence and extent of host-graft electrical coupling as well as the timing and pattern of graft activation. As described here, this system has been employed to investigate the electromechanical integration of human embryonic stem cell-derived cardiomyocytes in a guinea pig model of cardiac injury, but analogous approaches should be applicable to other human graft cell types and animal models.


Subject(s)
Electroporation , Mechanical Phenomena , Myocytes, Cardiac/cytology , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/transplantation , Stem Cell Transplantation/methods , Animals , Cell Line , Cryopreservation , Deoxyribonucleases/chemistry , Deoxyribonucleases/metabolism , Guinea Pigs , Heart Injuries/pathology , Humans , Male , Molecular Imaging , Pluripotent Stem Cells/metabolism , Zinc Fingers
16.
FASEB J ; 28(7): 3007-15, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24687990

ABSTRACT

CHF1/Hey2 is a Notch-responsive basic helix-loop-helix transcription factor involved in cardiac development. Common variants in Hey2 are associated with Brugada syndrome. We hypothesized that absence of CHF1/Hey2 would result in abnormal cellular electrical activity, altered cardiac conduction system (CCS) development, and increased arrhythmogenesis. We isolated neonatal CHF/Hey2-knockout (KO) cardiac myocytes and measured action potentials and ion channel subunit gene expression. We also crossed myocardial-specific CHF1/Hey2-KO mice with cardiac conduction system LacZ reporter mice and stained for conduction system tissue. We also performed ambulatory ECG monitoring for arrhythmias and heart rate variability. Neonatal cardiomyocytes from CHF1/Hey2-KO mice demonstrate a 50% reduction in action potential dV/dT, a 50-75% reduction in SCN5A, KCNJ2, and CACNA1C ion channel subunit gene expression, and an increase in delayed afterdepolarizations from 0/min to 12/min. CHF1/Hey2 cKO CCS-lacZ mice have a ∼3-fold increase in amount of CCS tissue. Ambulatory ECG monitoring showed no difference in cardiac conduction, arrhythmias, or heart rate variability. Wild-type cells or animals were used in all experiments. CHF1/Hey2 may contribute to Brugada syndrome by influencing the expression of SCN5A and formation of the cardiac conduction system, but its absence does not cause baseline conduction defects or arrhythmias in the adult mouse.-Hartman, M. E., Liu, Y., Zhu, W.-Z., Chien, W.-M., Weldy, C. S., Fishman, G. I., Laflamme, M. A., Chin, M. T. Myocardial deletion of transcription factor CHF1/Hey2 results in altered myocyte action potential and mild conduction system expansion but does not alter conduction system function or promote spontaneous arrhythmias.


Subject(s)
Action Potentials/genetics , Arrhythmias, Cardiac/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Heart Conduction System/abnormalities , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Repressor Proteins/genetics , Transcription Factors/genetics , Animals , Arrhythmias, Cardiac/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Brugada Syndrome , Cardiac Conduction System Disease , Heart Conduction System/metabolism , Heart Rate/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Repressor Proteins/metabolism , Transcription Factors/metabolism
17.
J Physiol Sci ; 63(3): 183-93, 2013 May.
Article in English | MEDLINE | ID: mdl-23553563

ABSTRACT

Mountain sickness (MS) occurs among humans visiting or inhabiting high altitude environments. We conducted genetic analyses of seven single nucleotide polymorphisms (SNPs) in the promoter region of VEGFA gene for lowland (Han) and highland (Tibetan) Chinese. The seven SNPs were evaluated in Han and Tibetan patients with acute (A) and chronic (C) MS. We compared 64 patients with AMS with 64 Han unaffected with MS, as well as 48 CMS patients with 32 unaffected Tibetans. The SNPs studied are rs699947, rs34357231, rs79469752, rs13207351, rs28357093, rs1570360, and rs2010963 which are found in the promoter ranging from -2,578 to -634 bp from the transcriptional start site (TSS), respectively. Direct sequencing was used to identify individual genotypes for these SNPs. Arterial oxygen saturation of hemoglobin (SaO2) was found to be significantly associated with the rs699947, rs34357231, rs13207351, and rs1570360 SNPs in Han patients with AMS, while the rs2010963 SNP was found to approach significance in the AMS study group, but found to be significantly associated in the normal Tibetan study group. The Han and Tibetan control groups were found to diverge significantly for the rs28357093 and rs2010963 SNPs, as measured by genetic distances of 0.073 and 0.054, respectively. All the SNPs are found in transcriptional factor binding sites (TFBS), and their possible role in gene regulation was evaluated with regard to MS. MS was found to be significantly associated with these SNPs compared with their Han and Tibetan control groups, indicating that these nucleotide substitutions result in TFBS changes which apparently have a physiological effect on the development of high altitude sickness.


Subject(s)
Altitude Sickness/genetics , Asian People/genetics , Vascular Endothelial Growth Factor A/genetics , Acute Disease , Adult , Base Sequence , Binding Sites/genetics , Ethnicity/genetics , Female , Humans , Male , Polymorphism, Single Nucleotide , Transcription Factors/metabolism
18.
Stem Cells Dev ; 22(14): 1991-2002, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23461462

ABSTRACT

Despite preclinical studies demonstrating the functional benefit of transplanting human pluripotent stem cell-derived cardiomyocytes (PSC-CMs) into damaged myocardium, the ability of these immature cells to adopt a more adult-like cardiomyocyte (CM) phenotype remains uncertain. To address this issue, we tested the hypothesis that prolonged in vitro culture of human embryonic stem cell (hESC)- and human induced pluripotent stem cell (hiPSC)-derived CMs would result in the maturation of their structural and contractile properties to a more adult-like phenotype. Compared to their early-stage counterparts (PSC-CMs after 20-40 days of in vitro differentiation and culture), late-stage hESC-CMs and hiPSC-CMs (80-120 days) showed dramatic differences in morphology, including increased cell size and anisotropy, greater myofibril density and alignment, sarcomeres visible by bright-field microscopy, and a 10-fold increase in the fraction of multinucleated CMs. Ultrastructural analysis confirmed improvements in the myofibrillar density, alignment, and morphology. We measured the contractile performance of late-stage hESC-CMs and hiPSC-CMs and noted a doubling in shortening magnitude with slowed contraction kinetics compared to the early-stage cells. We then examined changes in the calcium-handling properties of these matured CMs and found an increase in calcium release and reuptake rates with no change in the maximum amplitude. Finally, we performed electrophysiological assessments in hESC-CMs and found that late-stage myocytes have hyperpolarized maximum diastolic potentials, increased action potential amplitudes, and faster upstroke velocities. To correlate these functional changes with gene expression, we performed qPCR and found a robust induction of the key cardiac structural markers, including ß-myosin heavy chain and connexin-43, in late-stage hESC-CMs and hiPSC-CMs. These findings suggest that PSC-CMs are capable of slowly maturing to more closely resemble the phenotype of adult CMs and may eventually possess the potential to regenerate the lost myocardium with robust de novo force-producing tissue.


Subject(s)
Action Potentials/physiology , Embryonic Stem Cells/physiology , Induced Pluripotent Stem Cells/physiology , Myocytes, Cardiac/physiology , Myofibrils/physiology , Biomarkers/metabolism , Calcium/metabolism , Cell Differentiation , Cells, Cultured , Connexin 43/genetics , Connexin 43/metabolism , Embryonic Stem Cells/cytology , Gene Expression , Humans , Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/cytology , Myofibrils/ultrastructure , Patch-Clamp Techniques , Time Factors , Ventricular Myosins/genetics , Ventricular Myosins/metabolism
19.
Can J Physiol Pharmacol ; 90(12): 1611-22, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23210440

ABSTRACT

Most cardiac diseases are associated with fibrosis. Calcineurin (CaN) is regulated by Ca(2+)/calmodulin (CaM). The CaN-NFAT (nuclear factor of activated T cell) pathway is involved in the process of cardiac diseases, such as cardiac hypertrophy, but its effect on myocardial fibrosis remains unclear. The present study investigates whether the CaN-NFAT pathway is involved in cardiac fibroblast (CF) proliferation induced by electrical field stimulation (EFS), which recently became a popular treatment for heart failure and cardiac tissue engineering. CF proliferation was evaluated by a cell survival assay (MTT) and cell counts. Myocardial fibrosis was assessed by collagen I and collagen III protein expression. Green fluorescent protein (GFP)-tagged NFAT was used to detect NFAT nuclear translocation. CF proliferation, myocardial fibrosis, CaN activity, and NFAT nuclear translocation were enhanced by EFS. More importantly, these effects were abolished by CaN inhibitors, dominant negative CaN (DN-CaN), and CaN gene silenced with siRNA. Furthermore, buffering intracellular Ca(2+) with BAPTA-AM and blocking Ca(2+) influx with nifedipine suppressed EFS-induced increase in intracellular Ca(2+) and CF proliferation. These results suggested that the CaN-NFAT pathway mediates CF proliferation, and that the CaN-NFAT pathway might be a possible therapeutic target for EFS-induced myocardial fibrosis and cardiac tissue engineering.


Subject(s)
Calcineurin/metabolism , Fibroblasts/physiology , Myocytes, Cardiac/physiology , NFATC Transcription Factors/metabolism , Animals , Calcium/metabolism , Cell Growth Processes/physiology , Cell Nucleus/metabolism , Cell Survival/physiology , Cells, Cultured , Collagen Type I/metabolism , Collagen Type III/metabolism , Electric Stimulation/methods , Endomyocardial Fibrosis/metabolism , Endomyocardial Fibrosis/pathology , Fibroblasts/cytology , Fibroblasts/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Protein Transport , Rats , Rats, Sprague-Dawley , Signal Transduction
20.
Nature ; 489(7415): 322-5, 2012 Sep 13.
Article in English | MEDLINE | ID: mdl-22864415

ABSTRACT

Transplantation studies in mice and rats have shown that human embryonic-stem-cell-derived cardiomyocytes (hESC-CMs) can improve the function of infarcted hearts, but two critical issues related to their electrophysiological behaviour in vivo remain unresolved. First, the risk of arrhythmias following hESC-CM transplantation in injured hearts has not been determined. Second, the electromechanical integration of hESC-CMs in injured hearts has not been demonstrated, so it is unclear whether these cells improve contractile function directly through addition of new force-generating units. Here we use a guinea-pig model to show that hESC-CM grafts in injured hearts protect against arrhythmias and can contract synchronously with host muscle. Injured hearts with hESC-CM grafts show improved mechanical function and a significantly reduced incidence of both spontaneous and induced ventricular tachycardia. To assess the activity of hESC-CM grafts in vivo, we transplanted hESC-CMs expressing the genetically encoded calcium sensor, GCaMP3 (refs 4, 5). By correlating the GCaMP3 fluorescent signal with the host ECG, we found that grafts in uninjured hearts have consistent 1:1 host­graft coupling. Grafts in injured hearts are more heterogeneous and typically include both coupled and uncoupled regions. Thus, human myocardial grafts meet physiological criteria for true heart regeneration, providing support for the continued development of hESC-based cardiac therapies for both mechanical and electrical repair.


Subject(s)
Arrhythmias, Cardiac/therapy , Electrophysiological Phenomena , Embryonic Stem Cells/cytology , Heart Injuries/physiopathology , Myocardium/pathology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/transplantation , Animals , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/physiopathology , Calcium/analysis , Calcium/metabolism , Electric Stimulation , Fluorescent Dyes/analysis , Guinea Pigs , Heart Injuries/complications , Heart Injuries/pathology , Humans , Luminescent Measurements , Male , Myocardial Contraction/physiology , Myocardium/cytology , Myocytes, Cardiac/physiology , Tachycardia, Ventricular/etiology , Tachycardia, Ventricular/physiopathology , Tachycardia, Ventricular/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...