Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 718, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267419

ABSTRACT

Domain boundaries have been intensively investigated in bulk ferroelectric materials and two-dimensional materials. Many methods such as electrical, mechanical and optical approaches have been utilized to probe and manipulate domain boundaries. So far most research focuses on the initial and final states of domain boundaries before and after manipulation, while the microscopic understanding of the evolution of domain boundaries remains elusive. In this paper, we report controllable manipulation of the domain boundaries in two-dimensional ferroelectric In2Se3 with atomic precision using scanning tunneling microscopy. We show that the movements of the domain boundaries can be driven by the electric field from a scanning tunneling microscope tip and proceed by the collective shifting of atoms at the domain boundaries. Our density functional theory calculations reveal the energy path and evolution of the domain boundary movement. The results provide deep insight into domain boundaries in two-dimensional ferroelectric materials and will inspire inventive applications of these materials.

2.
Nano Lett ; 23(22): 10651-10656, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37955300

ABSTRACT

Achieving magnetic control of ferroelectricity or electric control of magnetism is usually challenging in material systems as their magnetism and ferroelectricity have distinct fundamental origins and are subject to different symmetry constraints. However, such control has significant promise for a wide range of device applications. In this work, we employ first-principles density functional theory calculations to demonstrate the emergence of spin-driven ferroelectricity in a vertically stacked two-dimensional (2D) van der Waals magnetic heterostructure, formed by two ferromagnetic (FM) CrBr3 layers separated by an antiferromagnetic (AFM) MnPSe3 layer, delicately designed to be structurally inversion symmetric but magnetically asymmetric. The spin-induced out-of-plane electric polarization of the entire heterostructure can be reversibly controlled by an external magnetic field. We further validate the effectiveness of this design strategy in several other lattice-matched FM/AFM/FM heterostructures, thereby providing a novel family of multiferroic systems based on 2D materials.

3.
Phys Rev Lett ; 131(8): 086501, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37683154

ABSTRACT

Strong electron correlation under two-dimensional limit is intensely studied in the transition metal dichalcogenides monolayers, mostly within their charge density wave (CDW) states that host a star of David period. Here, by using scanning tunneling microscopy and spectroscopy and density functional theory calculations with on-site Hubbard corrections, we study the VTe_{2} monolayer with a different 2sqrt[3]×2sqrt[3] CDW period. We find that the dimerization of neighboring Te-Te and V-V atoms occurs during the CDW transition, and that the strong correlation effect opens a Mott-like full gap at Fermi energy (E_{F}). We further demonstrate that such a Mott phenomenon is ascribed to the combination of the CDW transition and on-site Coulomb interactions. Our work provides a new platform for exploring Mott physics in 2D materials.

4.
J Phys Chem Lett ; 13(25): 5766-5775, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35723976

ABSTRACT

Anatase TiO2(001) surface with (4 × 1) reconstruction is proposed to be a highly active catalytic surface. In this work, using time-domain ab initio nonadiabatic molecular dynamics, we reveal that the ridge structure formed by anatase(001) surface reconstruction is the photoreactive site for hole migration and trapping. Moreover, the ridge structure is destroyed by low-coverage CH3OH adsorption, leading to the suppression of its high photoreactivity. However, when the CH3OH coverage is increased and intermolecular hydrogen bonds (H-bonds) form, the ridge structure and its high photoreactivity are restored. Furthermore, the hole trapping dynamics is strongly coherent with intermolecular proton transfer in structures with intermolecular H-bonds. Our study proves that anatase TiO2(001)-(4 × 1) is a highly photoreactive surface where the ridge is the photoreactive site for hole trapping, which is coherent with the proton transfer process.

5.
Nano Lett ; 22(6): 2244-2250, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35274532

ABSTRACT

Single photon emitters (SPEs) are critical components of photon-based quantum technology. Recently, the interaction between surface plasmons and emitters has attracted increasing attention because of its potential to improve the quality of single-photon sources through stronger light-matter interactions. In this work, we use a hybrid plasmonic probe composed of a fiber taper and silver nanowire to controllably modulate the radiation properties of SPEs with differently oriented polarization. For out-of-plane oriented SPEs such as single CdSe quantum dots, the radiation lifetime could be reduced by a factor as large as seven; for in-plane oriented SPEs such as hBN defect SPEs, the average modulation amplitude varied from 0.69 to 1.23, depending on the position of the probe. The experimental results were highly consistent with the simulations and theory. This work provides an efficient approach for optimizing the properties of SPEs for quantum photonic integration.

6.
Nat Commun ; 13(1): 752, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35136082

ABSTRACT

The performances of rechargeable batteries are strongly affected by the operating environmental temperature. In particular, low temperatures (e.g., ≤0 °C) are detrimental to efficient cell cycling. To circumvent this issue, we propose a few-layer Bi2Se3 (a topological insulator) as cathode material for Zn metal batteries. When the few-layer Bi2Se3 is used in combination with an anti-freeze hydrogel electrolyte, the capacity delivered by the cell at -20 °C and 1 A g-1 is 1.3 larger than the capacity at 25 °C for the same specific current. Also, at 0 °C the Zn | |few-layer Bi2Se3 cell shows capacity retention of 94.6% after 2000 cycles at 1 A g-1. This behaviour is related to the fact that the Zn-ion uptake in the few-layer Bi2Se3 is higher at low temperatures, e.g., almost four Zn2+ at 25 °C and six Zn2+ at -20 °C. We demonstrate that the unusual performance improvements at low temperatures are only achievable with the few-layer Bi2Se3 rather than bulk Bi2Se3. We also show that the favourable low-temperature conductivity and ion diffusion capability of few-layer Bi2Se3 are linked with the presence of topological surface states and weaker lattice vibrations, respectively.

7.
J Am Chem Soc ; 144(7): 3146-3153, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35038385

ABSTRACT

An accurate single-molecule kinetic isotope effect (sm-KIE) was applied to circumvent the inherent limitation of conventional ensemble KIE by using graphene-molecule-graphene single-molecule junctions. In situ monitoring of the single-molecule reaction trajectories in real time with high temporal resolution has the capability to characterize the deeper information brought by KIE. The C-O bond cleavage and the C-C bond formation of the transition state (TS) were observed in the Claisen rearrangement through the secondary kinetic isotope effect, demonstrating the high detection sensitivity and accuracy of this method. More interestingly, this sm-KIE can be used to determine TS structures under different electric fields, revealing the multidimensional regulation of the TS. The detection and manipulation of the TS provide a broad perspective to understand and optimize chemical reactions and biomimetic progress.

8.
Adv Sci (Weinh) ; 9(1): e2103229, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34716689

ABSTRACT

Searching multiple types of terahertz (THz) irradiation source is crucial for the THz technology. In addition to the conventional fermionic cases, bosonic quasi-/particles also promise energy-efficient THz wave emission. Here, by utilizing a 2D ferromagnetic Cr2 Ge2 Te6 crystal, first a phonon-related magneto-tunable monochromatic THz irradiation source is demonstrated. With a low-photonic-energy broadband THz pump, a strong THz irradiation with frequency ≈0.9 THz and bandwidth ≈0.25 THz can be generated and its conversion efficiency could even reach 2.1% at 160 K. Moreover, it is intriguing to find that such monochromatic THz irradiation can be efficiently modulated by external magnetic field below 160 K. According to both experimental and theoretical analyses, the emergent THz irradiation is identified as the emission from the phonon-polariton and its temperature and magnetic field dependent behaviors confirm the large spin-lattice coupling in this 2D ferromagnetic crystal. These observations provide a new route for the creation of tunable monochromatic THz source which may have great practical interests in future applications in photonic and spintronic devices.

9.
Adv Sci (Weinh) ; 9(2): e2103443, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34761558

ABSTRACT

At the macroscopic scale, the friction force (f) is found to increase with the normal load (N), according to the classic law of Da Vinci-Amontons, namely, f = µN, with a positive definite friction coefficient (µ). Here, first-principles calculations are employed to predict that, the static force f, measured by the corrugation in the sliding potential energy barrier, is lowered upon increasing the normal load applied on one layer of the recently discovered ferroelectric In2 Se3 over another commensurate layer of In2 Se3 . That is, a negative differential friction coefficient µ can be realized, which thus simultaneously breaking the classic Da Vinci-Amontons law. Such a striking and counterintuitive observation can be rationalized by the delicate interplay of the interfacial van der Waals repulsive interactions and the electrostatic energy reduction due to the enhancement of the intralayer SeIn ionic bonding via charge redistribution under load. The present findings are expected to play an instrumental role in design of high-performance solid lubricants and mechanical-electronic nanodevices.

10.
J Phys Chem Lett ; 12(49): 11902-11909, 2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34878795

ABSTRACT

Domain boundaries in ferroelectric materials exhibit rich and diverse physical properties distinct from their parent materials and have been proposed for broad applications in nanoelectronics and quantum information technology. Due to their complexity and diversity, the internal atomic and electronic structure of domain boundaries that governs the electronic properties remains far from being elucidated. By using scanning tunneling microscopy and spectroscopy (STM/S) combined with density functional theory (DFT) calculations, we directly visualize the atomic structure of polar domain boundaries in two-dimensional (2D) ferroelectric ß'-In2Se3 down to the monolayer limit. We observe a double-barrier energy potential with a width of about 3 nm across the 60° tail-to-tail domain boundaries in monolayer ß'-In2Se3. The results will deepen our understanding of domain boundaries in 2D ferroelectric materials and stimulate innovative applications of these materials.

11.
Mater Horiz ; 8(5): 1472-1480, 2021 May 01.
Article in English | MEDLINE | ID: mdl-34846455

ABSTRACT

Atomically thin two-dimensional (2D) van der Waals materials have exhibited many exotic layer-dependent physical properties including electronic structure, magnetic order, etc. Here, we report a striking even-odd layer dependent oscillation in the ferroelectric polarization of 2H-stacked few-layer α-In2Se3 nanoflakes. As characterized by piezoresponse force microscopy (PFM), when the in-plane (IP) electric polarization of 2H-stacked α-In2Se3 films is electrically aligned, the out-of-plane (OOP) polarization of the odd-layer (OL) samples is obviously larger than that of the even-layer (EL) ones. Similarly, samples with electrically aligned OOP polarization also show even-odd layer dependent IP polarization. Such an even-odd oscillation, as confirmed by the density functional theory calculations, can be attributed to the strong intercorrelation of the IP and OOP electric polarization of the α-In2Se3 monolayers and the special 2H-stacking structure of a 180 degree IP rotation with respect to the adjacent layers. Moreover, a negative differential resistance, interestingly, is induced by the polarization flip with a small coercive field of ∼1.625 kV cm-1, and its peak-to-valley ratio can be tuned up to ∼7 by the gate. This work demonstrates that the delicate stacking geometry of multilayer α-In2Se3 can bring an interesting even-odd ferroelectric effect, enriching the layer-dependent physical properties of the 2D materials family.

12.
Nat Commun ; 12(1): 5298, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34489428

ABSTRACT

Ferroelectricity, the electrostatic counterpart to ferromagnetism, has long been thought to be incompatible with metallicity due to screening of electric dipoles and external electric fields by itinerant charges. Recent measurements, however, demonstrated signatures of ferroelectric switching in the electrical conductance of bilayers and trilayers of WTe2, a semimetallic transition metal dichalcogenide with broken inversion symmetry. An especially promising aspect of this system is that the density of electrons and holes can be continuously tuned by an external gate voltage. This degree of freedom enables measurement of the spontaneous polarization as free carriers are added to the system. Here we employ capacitive sensing in dual-gated mesoscopic devices of bilayer WTe2 to directly measure the spontaneous polarization in the metallic state and quantify the effect of free carriers on the polarization in the conduction and valence bands, separately. We compare our results to a low-energy model for the electronic bands and identify the layer-polarized states that contribute to transport and polarization simultaneously. Bilayer WTe2 is thus shown to be a fully tunable ferroelectric metal and an ideal platform for exploring polar ordering, ferroelectric transitions, and applications in the presence of free carriers.

13.
ACS Nano ; 14(12): 16755-16760, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33258600

ABSTRACT

Puckered honeycomb Sb monolayer, the structural analog of black phosphorene, has been recently successfully grown by means of molecular beam epitaxy. However, little is known to date about the growth mechanism for such a puckered honeycomb monolayer. In this study, by using scanning tunneling microscopy in combination with first-principles density functional theory calculations, we unveil that the puckered honeycomb Sb monolayer takes a kinetics-limited two-step growth mode. As the coverage of Sb increases, the Sb atoms first form the distorted hexagonal lattice as the half layer, and then the distorted hexagonal half-layer transforms into the puckered honeycomb lattice as the full layer. These results provide the atomic-scale insight in understanding the growth mechanism of puckered honeycomb monolayer and can be instructive to the direct growth of other monolayers with the same structure.

14.
Nano Lett ; 20(11): 8408-8414, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33064495

ABSTRACT

The interfacial charge transfer from the substrate may influence the electronic structure of the epitaxial van der Waals (vdW) monolayers and, thus, their further technological applications. For instance, the freestanding Sb monolayer in the puckered honeycomb phase (α-antimonene), the structural analogue of black phosphorene, was predicted to be a semiconductor, but the epitaxial one behaves as a gapless semimetal when grown on the Td-WTe2 substrate. Here, we demonstrate that interface engineering can be applied to tune the interfacial charge transfer and, thus, the electron band of the epitaxial monolayer. As a result, the nearly freestanding (semiconducting) α-antimonene monolayer with a band gap of ∼170 meV was successfully obtained on the SnSe substrate. Furthermore, a semiconductor-semimetal crossover is observed in the bilayer α-antimonene. This study paves the way toward modifying the electron structure in two-dimensional vdW materials through interface engineering.

15.
Nano Lett ; 20(11): 8229-8235, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33054238

ABSTRACT

Probing and understanding the intrinsic active sites of electrocatalysts is crucial to unravel the underlying mechanism of CO2 electroreduction and provide a prospective for the rational design of high-performance electrocatalysts. However, their structure-activity relationships are not straightforward because electrocatalysts might reconstruct under realistic working conditions. Herein, we employ in-situ measurements to unveil the intrinsic origin of the InN nanosheets which served as an efficient electrocatalyst for CO2 reduction with a high faradaic efficiency of 95% for carbonaceous product. During the CO2 electroreduction, InN nanosheets reconstructed to form the In-rich surface. Density functional theory calculations revealed that the reconstruction of InN led to the redistribution of surface charge that significantly promoted the adsorption of HCOO* intermediates and thus benefited the formation of formate toward CO2 electroreduction. This work establishes a fundamental understanding on the mechanism associated with self-reconstruction of heterogeneous catalysts toward CO2 electroreduction.

16.
ACS Nano ; 14(9): 12037-12044, 2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32885948

ABSTRACT

The presence of two-dimensional (2D) layer-stacking heterostructures that can efficiently tune the interface properties by stacking desirable materials provides a platform to investigate some physical phenomena, such as the proximity effect and magnetic exchange coupling. Here, we report the observation of antisymmetric magnetoresistance in a van der Waals (vdW) antiferromagnetic/ferromagnetic (AFM/FM) heterostructure of MnPS3/Fe3GeTe2 when the temperature is below the Neel temperature of MnPS3. Distinguished from two resistance states in conventional giant magnetoresistance, the magnetoresistance in the MnPS3/Fe3GeTe2 heterostructure exhibits three states, of high, intermediate, and low resistance. This antisymmetric magnetoresistance spike is determined by an unsynchronized magnetic switching between the AFM/FM interface layer and the bulk of Fe3GeTe2 during magnetization reversal. Our work highlights that the artificial vdW stacking structure holds potential to explore some physical phenomena and spintronic device applications.

17.
Sci Bull (Beijing) ; 65(15): 1252-1259, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-36747412

ABSTRACT

The electric control of magnetic properties based on magnetoelectric effect is crucial for the development of future data storage devices. Here, based on first-principles calculations, a strong magnetoelectric effect is proposed to effectively switch on/off the magnetic states as well as alter the in-plane/perpendicular easy axes of metal-phthalocyanine molecules (MPc) by reversing the electric polarization of the underlying two-dimensional (2D) ferroelectric α-In2Se3 substrate with the application of an external electric field. The mechanism originates from the different hybridization between the molecule and the ferroelectric substrate in which the different electronic states of surface Se layer play a dominant role. Moreover, the magnetic moments and magnetic anisotropy energies (MAE) of OsPc/In2Se3 can be further largely enhanced by a functionalized atom atop the OsPc molecule. The I-OsPc/In2Se3 system possesses large MAE up to 30 meV at both polarization directions, which is sufficient for room-temperature applications. These findings provide a feasible scheme to realize ferroelectric control of magnetic states in 2D limit, which have great potential for applications in nanoscale electronics and spintronics.

18.
Nat Commun ; 10(1): 3872, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31455804

ABSTRACT

Molecular self-assembly into crystallised films or wires on surfaces produces a big family of motifs exhibiting unique optoelectronic properties. However, little attention has been paid to the fundamental mechanism of molecular crystallisation. Here we report a biomimetic design of phosphonate engineered, amphiphilic organic semiconductors capable of self-assembly, which enables us to use real-time in-situ scanning probe microscopy to monitor the growth trajectories of such organic semiconducting films as they nucleate and crystallise from amorphous solid states. The single-crystal film grows through an evolutionary selection approach in a two-dimensional geometry, with five distinct steps: droplet flattening, film coalescence, spinodal decomposition, Ostwald ripening, and self-reorganised layer growth. These sophisticated processes afford ultralong high-density microwire arrays with high mobilities, thus promoting deep understanding of the mechanism as well as offering important insights into the design and development of functional high-performance organic optoelectronic materials and devices through molecular and crystal engineering.

19.
Nano Lett ; 19(9): 6547-6553, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31414823

ABSTRACT

In CO2 electroreduction, the critical bottleneck lies in the CO2 activation which requires high overpotentials. CO2 activation is related to both the electronic structures of catalysts and those of adsorbates, thus an ideal catalyst should match its electronic structures with those of the adsorbate. Here, we harmonized the electronic structures of the adsorbate and Mn-doped In2S3 nanosheets for efficient CO2 reduction. The introduction of Mn dopants into In2S3 nanosheets enhanced both the Faradaic efficiency (FE) for carbonaceous products and current density (j). At -0.9 V vs RHE, Mn-doped In2S3 nanosheets exhibited a remarkable FE of 92% for carbonaceous product at a high j of 20.1 mA cm-2. Mechanistic studies revealed that Mn doping enabled the harmonic overlaps between the p orbitals of O atoms and d orbitals of Mn atoms near the conduction band edge of Mn-doped In2S3 nanosheets during the activation of CO2. Due to the unique electronic structures of the coadsorbed configurations, Mn-doped In2S3 nanosheets exhibited an energy barrier for CO2 activation into HCOO* lower than that over pristine In2S3 nanosheets.

20.
ACS Nano ; 13(7): 8004-8011, 2019 Jul 23.
Article in English | MEDLINE | ID: mdl-31241301

ABSTRACT

Phase transformation in emerging two-dimensional (2D) materials is crucial for understanding and controlling the interplay between structure and electronic properties. In this work, we investigate 2D In2Se3 synthesized via chemical vapor deposition, a recently discovered 2D ferroelectric material. We observed that In2Se3 layers with thickness ranging from a single layer to ∼20 layers stabilized at the ß phase with a superstructure at room temperature. At around 180 K, the ß phase converted to a more stable ß' phase that was distinct from previously reported phases in 2D In2Se3. The kinetics of the reversible thermally driven ß-to-ß' phase transformation was investigated by temperature-dependent transmission electron microscopy and Raman spectroscopy, corroborated with the expected minimum-energy pathways obtained from our first-principles calculations. Furthermore, density functional theory calculations reveal in-plane ferroelectricity in the ß' phase. Scanning tunneling spectroscopy measurements show that the indirect bandgap of monolayer ß' In2Se3 is 2.50 eV, which is larger than that of the multilayer form with a measured value of 2.05 eV. Our results on the reversible thermally driven phase transformation in 2D In2Se3 with thickness down to the monolayer limit and the associated electronic properties will provide insights to tune the functionalities of 2D In2Se3 and other emerging 2D ferroelectric materials and shed light on their numerous potential applications (e.g., nonvolatile memory devices).

SELECTION OF CITATIONS
SEARCH DETAIL
...