Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(34): eadf9999, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37624887

ABSTRACT

The body fossil and biomarker records hint at an increase in biotic complexity between the two Cryogenian Snowball Earth episodes (ca. 661 million to ≤650 million years ago). Oxygen and nutrient availability can promote biotic complexity, but nutrient (particularly phosphorus) and redox dynamics across this interval remain poorly understood. Here, we present high-resolution paleoredox and phosphorus phase association data from multiple globally distributed drill core records through the non-glacial interval. These data are first correlated regionally by litho- and chemostratigraphy, and then calibrated within a series of global chronostratigraphic frameworks. The combined data show that regional differences in postglacial redox stabilization were partly controlled by the intensity of phosphorus recycling from marine sediments. The apparent increase in biotic complexity followed a global transition to more stable and less reducing conditions in shallow to mid-depth marine environments and occurred within a tolerable climatic window during progressive cooling after post-Snowball super-greenhouse conditions.

2.
Sci Adv ; 7(47): eabh1390, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34788084

ABSTRACT

The Siberian Traps large igneous province (STLIP) is commonly invoked as the primary driver of global environmental changes that triggered the end-Permian mass extinction (EPME). Here, we explore the contributions of coeval felsic volcanism to end-Permian environmental changes. We report evidence of extreme Cu enrichment in the EPME interval in South China. The enrichment is associated with an increase in the light Cu isotope, melt inclusions rich in copper and sulfides, and Hg concentration spikes. The Cu and Hg elemental and isotopic signatures can be linked to S-rich vapor produced by felsic volcanism. We use these previously unknown geochemical data to estimate volcanic SO2 injections and argue that this volcanism would have produced several degrees of rapid cooling before or coincident with the more protracted global warming. Large-scale eruptions near the South China block synchronous with the EPME strengthen the case that the STLIP may not have been the sole trigger.

3.
Nat Commun ; 9(1): 3395, 2018 08 20.
Article in English | MEDLINE | ID: mdl-30127517

ABSTRACT

The original version of this Article incorrectly gave the second address in the list of affiliations as "State Key Laboratory of Palaeobiology and Stratigraphy & Center for Excellence in Life and Paleoenvironment, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 210008 Nanjing, China", instead of the correct 'State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China". This has been corrected in both the PDF and HTML versions of the Article.

4.
Nat Commun ; 9(1): 2575, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29968714

ABSTRACT

The late Ediacaran to early Cambrian interval witnessed extraordinary radiations of metazoan life. The role of the physical environment in this biological revolution, such as changes to oxygen levels and nutrient availability, has been the focus of longstanding debate. Seemingly contradictory data from geochemical redox proxies help to fuel this controversy. As an essential nutrient, nitrogen can help to resolve this impasse by establishing linkages between nutrient supply, ocean redox, and biological changes. Here we present a comprehensive N-isotope dataset from the Yangtze Basin that reveals remarkable coupling between δ15N, δ13C, and evolutionary events from circa 551 to 515 Ma. The results indicate that increased fixed nitrogen supply may have facilitated episodic animal radiations by reinforcing ocean oxygenation, and restricting anoxia to near, or even at the sediment-water interface. Conversely, sporadic ocean anoxic events interrupted ocean oxygenation, and may have led to extinctions of the Ediacaran biota and small shelly animals.

SELECTION OF CITATIONS
SEARCH DETAIL
...