Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 197: 115766, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37976592

ABSTRACT

Fatigue failure, third-party destruction and internal corrosion may easily trigger gas and oil leakage during the operation of submarine multiphase pipelines. In order to analyze the underwater gas-oil plume development and migration law, a 3D model based on coupled Eulerian-Lagrangian numerical approach is proposed. The model is validated by laboratory experiment and the dynamic dispersion process of gas-oil plume in a large scale shallow sea environmental is further explored. Influencing factors such as leak location, leak size and water depth, flow pattern are investigated. The simulated results show that leak location affects the gas-oil plume migration behaviors by influencing the leakage amount. Water depth significantly affects gas-oil migration and the separation of gas plume and oil plume is gradually apparent as water depth increases. This study fills in the gap of ignoring the influence of flow pattern previously and is expected to help build more accurate emergency response guidelines.


Subject(s)
Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Water , Ships
2.
Entropy (Basel) ; 22(8)2020 Aug 15.
Article in English | MEDLINE | ID: mdl-33286663

ABSTRACT

Stealth malware is a representative tool of advanced persistent threat (APT) attacks, which poses an increased threat to cyber-physical systems (CPS) today. Due to the use of stealthy and evasive techniques, stealth malwares usually render conventional heavy-weight countermeasures inapplicable. Light-weight countermeasures, on the other hand, can help retard the spread of stealth malwares, but the ensuing side effects might violate the primary safety requirement of CPS. Hence, defenders need to find a balance between the gain and loss of deploying light-weight countermeasures, which normally is a challenging task. To address this challenge, we model the persistent anti-malware process as a shortest-path tree interdiction (SPTI) Stackelberg game with both static version (SSPTI) and multi-stage dynamic version (DSPTI), and safety requirements of CPS are introduced as constraints in the defender's decision model. The attacker aims to stealthily penetrate the CPS at the lowest cost (e.g., time, effort) by selecting optimal network links to spread, while the defender aims to retard the malware epidemic as much as possible. Both games are modeled as bi-level integer programs and proved to be NP-hard. We then develop a Benders decomposition algorithm to achieve the Stackelberg equilibrium of SSPTI, and design a Model Predictive Control strategy to solve DSPTI approximately by sequentially solving an 1+δ approximation of SSPTI. Extensive experiments have been conducted by comparing proposed algorithms and strategies with existing ones on both static and dynamic performance metrics. The evaluation results demonstrate the efficiency of proposed algorithms and strategies on both simulated and real-case-based CPS networks. Furthermore, the proposed dynamic defense framework shows its advantage of achieving a balance between fail-secure ability and fail-safe ability while retarding the stealth malware propagation in CPS.

3.
Sci Rep ; 10(1): 2691, 2020 Feb 14.
Article in English | MEDLINE | ID: mdl-32060330

ABSTRACT

Identifying the vital nodes in networks is of great significance for understanding the function of nodes and the nature of networks. Many centrality indices, such as betweenness centrality (BC), eccentricity centrality (EC), closeness centricity (CC), structural holes (SH), degree centrality (DC), PageRank (PR) and eigenvector centrality (VC), have been proposed to identify the influential nodes of networks. However, some of these indices have limited application scopes. EC and CC are generally only applicable to undirected networks, while PR and VC are generally used for directed networks. To design a more applicable centrality measure, two vital node identification algorithms based on node adjacency information entropy are proposed in this paper. To validate the effectiveness and applicability of the proposed algorithms, contrast experiments are conducted with the BC, EC, CC, SH, DC, PR and VC indices in different kinds of networks. The results show that the index in this paper has a high correlation with the local metric DC, and it also has a certain correlation with the PR and VC indices for directed networks. In addition, the experimental results indicate that our algorithms can effectively identify the vital nodes in different networks.

SELECTION OF CITATIONS
SEARCH DETAIL
...