Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters










Publication year range
1.
J Org Chem ; 89(9): 6205-6221, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38632842

ABSTRACT

Organic hydride/acid pairs have been reported as multisite proton-coupled electron transfer (MS-PCET) reagents in reductive MS-PCET reactions recently. Since the key step for an organic hydride/acid pair acting as an MS-PCET reagent is a chemical process of the organic hydride/acid pair releasing a formal hydrogen atom, the bond dissociation free energy of the organic hydride/acid pair releasing a formal hydrogen atom is a valuable thermodynamic parameter for objectively evaluating the thermodynamic potential for an organic hydride/acid pair to act as an MS-PCET reagent. Now, organic hydride/acid pairs of 216 organic hydrides have been demonstrated to be a potential type of thermodynamically potential-regulated MS-PCET reagent. Without a doubt, organic hydride/acid pairs reflect the change of N-substituted organic hydrides from simple hydride reductants to thermodynamically-regulated MS-PCET reagents, which could significantly expand the availability of novel MS-PCET reagents.

2.
RSC Adv ; 14(1): 222-232, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38173608

ABSTRACT

N-heterocycles are important chemical hydrogen-storage materials, and the acceptorless dehydrogenation and hydrogenation of N-heterocycles as organic hydrogen carriers have been widely studied, with the main focus on the catalyst synthesis and design, investigation of the redox mechanisms, and extension of substrate scope. In this work, the Gibbs free energies of the dehydrogenation of pre-aromatic N-heterocycles (YH2) and the hydrogenation of aromatic N-heterocycles (Y), i.e., ΔGH2R(YH2) and ΔGH2A(Y), were derived by constructing thermodynamic cycles using Hess' law. The thermodynamic abilities for the acceptorless dehydrogenation and hydrogenation of 78 pre-aromatic N-heterocycles (YH2) and related 78 aromatic N-heterocycles (Y) were well evaluated and discussed in acetonitrile. Moreover, the applications of the two thermodynamic parameters in identifying pre-aromatic N-heterocycles possessing reversible dehydrogenation and hydrogenation properties and the selection of the pre-aromatic N-heterocyclic hydrogen reductants in catalytic hydrogenation were considered and are discussed in detail. Undoubtedly, this work focuses on two new thermodynamic parameters of pre-aromatic and aromatic N-heterocycles, namely ΔGH2R(YH2) and ΔGH2A(Y), which are important supplements to our previous work to offer precise insights into the chemical hydrogen storage and hydrogenation reactions of pre-aromatic and aromatic N-heterocycles.

3.
ACS Omega ; 8(35): 31984-31997, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37692224

ABSTRACT

Since the hydrogenation of imines (X) and the dehydrogenation of amines (XH2) generally involve the two hydrogen ions (H- + H+) transfer, the thermodynamic abilities of various amines releasing hydrides or two hydrogen ions as well as various imines accepting protons or two hydrogen ions are important and characteristic physical parameters. In this work, the pKa values of 84 protonated imines (XH+) in acetonitrile were predicted. Combining Gibbs free energy changes of amines releasing hydrides in acetonitrile from our previous work with the pKa(XH+) values, the Gibbs free energy changes of amines releasing two hydrogen ions and imines accepting two hydrogen ions were derived using Hess's law by constructing thermochemical cycles, and the thermodynamic evaluations of amines as hydrides or two hydrogen ions reductants and imines as protons or two hydrogen ions acceptors are well compared and discussed. Eventually, the practical application of thermodynamic data for amines and imines on hydrogenation feasibility, mechanism, and possible elementary steps was shown and discussed in this paper from the point of thermodynamics.

4.
Zootaxa ; 5306(2): 232-242, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37518526

ABSTRACT

The generic diagnostic characters of Paracercopis (Hemiptera: Cercopoidea: Cercopidae) are redefined and the autapomorphies are proposed to support the monophyly of the genus. Scanning electron micrographs of antennal sensilla and sensilla on rostral apex of P. seminigra (Melichar, 1902) are provided for the first time. A checklist together with new distribution records and key to the species of the genus are provided. Host plant associations of Paracercopis species are reported for the first time. Paracercopis unicolor Liang, Zhang & Xiao, sp. nov., representing the seventh and largest species of the genus is described from Hubei Province in south central China.


Subject(s)
Hemiptera , Animals , China , Microscopy , Sensilla
5.
ACS Phys Chem Au ; 3(4): 358-373, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37520315

ABSTRACT

It is well-known that for an electron transfer reaction, the electron-donating ability of electron donors and the electron-accepting ability of electron acceptors can be quantitatively described by the oxidation potential of electron donors and the reduction potential of electron acceptors. However, for an electron transfer reaction, the electron-donating activity of electron donors and the electron-accepting activity of electron acceptors cannot be quantitatively described by a characteristic parameter of electron donors and a characteristic parameter of electron acceptors till now. In this paper, a characteristic activity parameter of electron donors and electron acceptors named as their thermo-kinetic parameter is proposed to quantify the electron-donating activity of electron donors and the electron-accepting activity of electron acceptors in electron transfer reactions. At the same time, the thermo-kinetic parameter values of 70 well-known electron donors and the corresponding 70 conjugated electron acceptors in acetonitrile at 298 K are determined. The activation free energies of 4900 typical electron transfer reactions in acetonitrile at 298 K are estimated according to the thermo-kinetic parameter values of 70 electron donors and 70 conjugated electron acceptors, and the estimated results have received good verification of the corresponding independent experimental measurements. The physical meaning of the thermo-kinetic parameter is examined. The relationship of the thermo-kinetic parameter with the corresponding redox potential as well as the relationship of the activation free energy with the corresponding thermodynamic driving force of electron transfer reactions is examined. The results show that the observed relationships between the thermo-kinetic parameters and the redox potentials as well as the observed relationships between the activation free energy and the thermodynamic driving force depend on the choice of electron donors and electron acceptors as well as the electron transfer reactions. The greatest contribution of this paper is to realize the symmetry and unification of kinetic equations and the corresponding thermodynamic equations of electron transfer reactions.

6.
Molecules ; 28(11)2023 May 28.
Article in English | MEDLINE | ID: mdl-37298875

ABSTRACT

Over the years, RuIV(bpy)2(py)(O)2+([RuIVO]2+) has garnered considerable interest owing to its extensive use as a polypyridine mono-oxygen complex. However, as the active-site Ru=O bond changes during the oxidation process, [RuIVO]2+ can be used to simulate the reactions of various high-priced metallic oxides. In order to elucidate the hydrogen element transfer process between the Ruthenium-oxo-polypyridyl complex and organic hydride donor, the current study reports on the synthesis of [RuIVO]2+, a polypyridine mono-oxygen complex, in addition to 1H and 3H (organic hydride compounds) and 1H derivative: 2. Through 1H-NMR analysis and thermodynamics- and kinetics-based assessments, we collected data on [RuIVO]2+ and two organic hydride donors and their corresponding intermediates and established a thermodynamic platform. It was confirmed that a one-step hydride transfer reaction between [RuIVO]2+ and these organic hydride donors occurs, and here, the advantages and nature of the new mechanism approach are revealed. Accordingly, these findings can considerably contribute to the better application of the compound in theoretical research and organic synthesis.


Subject(s)
Organometallic Compounds , Ruthenium , Ruthenium/chemistry , Organometallic Compounds/chemistry , Oxidation-Reduction , Oxides , Hydrogen/chemistry
7.
RSC Adv ; 13(23): 16023-16033, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37260565

ABSTRACT

Nitrogen-containing heterocycles are an important class of antioxidants, and their reactivity and selectivity in hydrogen atom reactions have attracted significant interest from chemists. In this work, the kinetics of hydrogen atom transfer reactions from C(sp3)-H bonds of 28 nitrogen-containing heterocycles, oxygen-containing heterocycles, alicyclic amines and cycloalkanes, which were denoted as XH, to the CumO˙ radical, were investigated. The characteristic physical parameter of the substrate, i.e., the thermo-kinetic parameter ΔG≠o(XH), was determined using the kinetic equation [ΔG≠XH/Y = ΔG≠o(XH) + ΔG≠o(Y)] to quantitatively evaluate the H-donating ability of XH. The effects of the substrate structure, substituent attached to the nitrogen atom, and ring size on the H-donating ability were discussed carefully. By comparing the H-donating abilities of cycloalkanes, alicyclic amines and nitrogen/oxygen-containing heterocycles, the influence of the introduction of N, O, or carbonyl groups in the carbon ring on the H-donating ability of C(sp3)-H bond was determined. The electronic, steric and stereo-electronic effects of the groups were also discussed. Herein, we not only quantitatively determined the H-donating ability of the substrate, but also provided ideas for the synthesis of new antioxidants.

8.
Molecules ; 28(6)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36985834

ABSTRACT

The selective reduction of α,ß-unsaturated carbonyl compounds is one of the core reactions and also a difficult task for organic synthesis. We have been attempting to study the thermodynamic data of these compounds to create a theoretical basis for organic synthesis and computational chemistry. By electrochemical measurement method and titration calorimetry, in acetonitrile at 298 K, the hydride affinity of two types of unsaturated bonds in α,ß-unsaturated carbonyl compounds, their single-electron reduction potential, and the single-electron reduction potential of the corresponding radical intermediate are determined. Their hydrogen atom affinity, along with the hydrogen atom affinity and proton affinity of the corresponding radical anion, is also derived separately based on thermodynamic cycles. The above data are used to establish the corresponding "Molecule ID Card" (Molecule identity card) and analyze the reduction mechanism of unsaturated carbonyl compounds. Primarily, the mixture of any carbonyl hydride ions and Ac-tempo+ will stimulate hydride transfer process and create corresponding α,ß-unsaturated carbonyl compounds and Ac-tempoH from a thermodynamic point of view.

9.
Microbiol Spectr ; : e0322322, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36975832

ABSTRACT

The emergence of the plasmid-borne polymyxin resistance gene mcr-1 threatens the clinical utility of last-line polymyxins. Although mcr-1 has disseminated to various Enterobacterales species, the prevalence of mcr-1 is the highest among Escherichia coli isolates while remaining low in Klebsiella pneumoniae. The reason for such a difference in prevalence has not been investigated. In this study, we examined and compared the biological characteristics of various mcr-1 plasmids in these two bacterial species. Although mcr-1-bearing plasmids were stably maintained in both E. coli and K. pneumoniae, the former presented itself to be superior by demonstrating a fitness advantage while carrying the plasmid. The inter- and intraspecies transferability efficiencies were evaluated for common mcr-1-harboring plasmids (IncX4, IncI2, IncHI2, IncP, and IncF types) with native E. coli and K. pneumoniae strains as donors. Here, we found that the conjugation frequencies of mcr-1 plasmids were significantly higher in E. coli than in K. pneumoniae, regardless of the donor species and Inc types of the mcr-1 plasmids. Plasmid invasion experiments revealed that mcr-1 plasmids displayed greater invasiveness and stability in E. coli than in K. pneumoniae. Moreover, K. pneumoniae carrying mcr-1 plasmids showed a competitive disadvantage when cocultured with E. coli. These findings indicate that mcr-1 plasmids could spread more easily among E. coli than among K. pneumoniae isolates and that mcr-1 plasmid-carrying E. coli has a competitive advantage over K. pneumoniae, leading to E. coli being the main mcr-1 reservoir. IMPORTANCE As infections caused by multidrug-resistant "superbugs" are increasing globally, polymyxins are often the only viable therapeutic option. Alarmingly, the wide spread of the plasmid-mediated polymyxin resistance gene mcr-1 is restricting the clinical utility of this last-line treatment option. With this, there is an urgent need to investigate the factors contributing to the spread and persistence of mcr-1-bearing plasmids in the bacterial community. Our research highlights that the higher prevalence of mcr-1 in E. coli than in K. pneumoniae is attributed to the greater transferability and persistence of mcr-1-bearing plasmid in the former species. By gaining these important insights into the persistence of mcr-1 in different bacterial species, we will be able to formulate effective strategies to curb the spread of mcr-1 and prolong the clinical life span of polymyxins.

10.
RSC Adv ; 13(5): 3295-3305, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36756400

ABSTRACT

The H-donating activity of phenol and the H-abstraction activity of phenol radicals have been extensively studied. In this article, the second-order rate constants of 25 hydrogen atom transfer (HAT) reactions between phenols and PINO and DPPH radicals in acetonitrile at 298 K were studied. Thermo-kinetic parameters ΔG ≠o(XH) were obtained using a kinetic equation [ΔG ≠ XH/Y = ΔG ≠o(XH) + ΔG ≠o(Y)]. Bond dissociation free energies ΔG o(XH) were calculated by the iBonD HM method, whose details are available at https://pka.luoszgroup.com/bde_prediction. Intrinsic resistance energies ΔG ≠ XH/X and ΔG ≠o(X) were determined as ΔG ≠o(XH) and ΔG o(XH) were available. ΔG o(XH), ΔG ≠ XH/X, ΔG ≠o(XH) and ΔG ≠o(X) were used to assess the H-donating abilities of the studied phenols and the H-abstraction abilities of phenol radicals in thermodynamics, kinetics and actual HAT reactions. The effect of structures on these four parameters was discussed. The reliabilities of ΔG ≠o(XH) and ΔG ≠o(X) were examined. The difference between the method of determining ΔG ≠ XH/X mentioned in this study and the dynamic nuclear magnetic method mentioned in the literature was studied. Via this study, not only ΔG o(XH), ΔG ≠ XH/X, ΔG ≠o(XH) and ΔG ≠o(X) of phenols could be quantitatively evaluated, but also the structure-activity relationship of phenols is clearly demonstrated. Moreover, it lays the foundation for designing and synthesizing more antioxidants and radicals.

11.
BMC Ophthalmol ; 22(1): 439, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36384489

ABSTRACT

BACKGROUND: Recurrent retinal detachment (Re-RD) usually affects the prognosis of surgery for rhegmatogenous retinal detachment (RRD). Previous clinical studies of Re-RD were not specific. This study aimed to analyze the clinical characteristics of Re-RD in post-vitrectomy eyes with RRD and surgical outcomes after revitrectomy without combining it with retinectomy or scleral buckling. METHODS: This is a retrospective case series analyzed the ocular characteristics of 20 recurrent and contralateral eyes, evaluated the significance of the associations between variables before reoperation and the final best-corrected visual acuity (BCVA), and calculated the outcome of revitrectomy. RESULTS: Patients with phakic eyes, those undergoing only one surgery, and those with more than one break had better final BCVA. The final BCVA was negatively correlated with the axial length and positively correlated with the preoperative BCVA. Among the 12 eyes with no break detected before surgery, 11 (92%) were found to have a small crevice-like break beside the pigment scar of a large number of original laser spots. The single-operation complete retinal reattachment rate was 75%, the complete retinal reattachment rate was 80%, and the final incomplete retinal reattachment rate was 90%. The BCVA improved from 1.2 ± 0.6LogMAR (0.06 ± 0.25) before surgery to 0.8 ± 0.7LogMAR (0.15 ± 0.2) at the last follow-up. The BCVA of 16 patients with complete retinal reattachment improved from 1.0 ± 0.5LogMAR (0.1 ± 0.3) to 0.6 ± 0.4LogMAR (0.25 ± 0.4). In the contralateral eyes, 15% already had vision-damaging disease, and the incidence of eyesight-threating lesions was 5.9% during follow-up. CONCLUSIONS: Revitrectomy without retinectomy or scleral buckling can effectively treat Re-RD in post-vitrectomy eyes. In Re-RD patients with no definite retinal break detected preoperatively, the retinal hole usually shows small crevice-like changes alongside a large number of original laser pigment scars.


Subject(s)
Retinal Detachment , Humans , Retinal Detachment/diagnosis , Retinal Detachment/surgery , Retinal Detachment/etiology , Vitrectomy/adverse effects , Retrospective Studies , Visual Acuity , Scleral Buckling/adverse effects , Vision Disorders/etiology
12.
Molecules ; 27(21)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36364079

ABSTRACT

In this work, we compared the hydride-donating ability of five-membered benzoheterocyclic compounds (FMB) and six-membered benzoheterocyclic compounds (SMB), isomers of DMBI and DMIZ and of DMPZ and DMPX, using detailed thermodynamic driving forces [ΔGo (XH)], kinetic intrinsic barriers (ΔG≠XH/X), and thermo-kinetic parameters [ΔG≠° (XH)]. For DMBI and DMIZ, the values of ΔGo (XH), ΔG≠XH/X, and ΔG≠° (XH) are 49.2 and 53.7 kcal/mol, 35.88 and 42.04 kcal/mol, and 42.54 and 47.87 kcal/mol, respectively. For DMPZ and DMPX, the values of ΔGo (XH), ΔG≠XH/X, and ΔG≠° (XH) are 73.2 and 79.5 kcal/mol, 35.34 and 25.02 kcal/mol, and 54.27 and 52.26 kcal/mol, respectively. It is easy to see that the FMB isomers are thermodynamically dominant and that the SMB isomers are kinetically dominant. Moreover, according to the analysis of ΔG≠° (XH), compared to the SMB isomers, the FMB isomers have a stronger hydride-donating ability in actual chemical reactions.


Subject(s)
Thermodynamics , Acetonitriles/chemistry , Kinetics
13.
RSC Adv ; 12(42): 27389-27395, 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36275999

ABSTRACT

In this work, the antioxidant abilities of NADH coenzyme analogue BNAH, F420 reduction prototype analogue F420H, vitamin C analogue iAscH-, caffeic acid, and (+)-catechin in acetonitrile in chemical reactions were studied and discussed. Three physical parameters of the antioxidant XH, homolytic bond dissociation free energy ΔG °(XH), self-exchange HAT reaction activation free energy ΔG ≠ XH/X, and thermo-kinetic parameter ΔG ≠°(XH), were used to evaluate the antioxidant ability of XH in thermodynamics, kinetics, and thermo-kinetics. By comparing ΔG °(XH), ΔG ≠ XH/X and ΔG ≠°(XH) of these five bioactive antioxidants to release hydrogen atoms, it is easy to find that iAscH- is the best hydrogen atom donor both thermodynamically and kinetically among these antioxidants. Caffeic acid is the worst hydrogen atom donor thermodynamically, and F420H is the worst hydrogen atom donor kinetically. In addition, the thermodynamic hydride donating abilities of BNAH, F420H, and iAscH- were also discussed, and the order of thermodynamic hydride donating abilities was BNAH > F420H > iAscH-. Four HAT reactions BNAH/DPPH˙, (+)-catechin/DPPH˙, F420H/DPPH˙, and caffeic acid/DPPH˙ in acetonitrile at 298 K were studied by the stopped-flow method. The actual order of H-donating abilities of these four antioxidants in the HAT reactions is consistent with the order predicted by thermo-kinetic parameters. It is feasible to predict accurately the antioxidant abilities of antioxidants using thermo-kinetic parameters.

14.
Zhongguo Zhong Yao Za Zhi ; 47(18): 5040-5051, 2022 Sep.
Article in Chinese | MEDLINE | ID: mdl-36164914

ABSTRACT

Ultra-high-performance liquid chromatography-Q exactive orbitrap tandem mass spectrometry(UHPLC-QEOrbitrap-MS/MS) was used to explore the inhibitory effect and mechanism of ginkgo flavone aglycone(GA) combined with doxorubicin(DOX) on H22 cells. The effects of different concentrations of GA and DOX on the viability of H22 cells were investigated, and combination index(CI) was used to evaluate the effects. In the experiments, control(CON) group, DOX group, GA group, and combined GA and DOX(GDOX) group were constructed. Then the metabolomics strategy was employed to explore the metabolic markers that were significantly changed after combination therapy on the basis of single medication treatment, and by analyzing their biological significance, the effect and mechanism of the anti-tumor effect of GA combined with DOX were explained. The results revealed that when 30 µg·mL~(-1) GA and 0.5 µmol·L~(-1) DOX was determined as the co-administration concentration, the CI value was 0.808, indicating that the combination of GA and DOX had a synergistic anti-tumor effect. Metabolomics analysis identified 23 metabolic markers, including L-arginine, L-tyrosine and L-valine, mostly amino acids. Compared with the CON group, 22 and 17 metabolic markers were significantly down-regulated after DOX treatment and GA treatment, respectively. Compared with the DOX and GA groups, the treatment of GA combined with DOX further down-regulated the levels of these metabolic markers in liver cancer, which might contribute to the synergistic effect of the two. Five key metabolic pathways were found in pathway enrichment analysis, including glutathione metabolism, phenylalanine metabolism, arginine and proline metabolism, ß-alanine metabolism, and valine, leucine and isoleucine degradation. These findings demonstrated that the combination of GA and DOX remarkably inhibited the viability of H22 cells and exerted a synergistic anti-tumor effect. The mechanism might be related to the influence of the energy supply of tumor cells by interfering with the metabolism of various amino acids.


Subject(s)
Doxorubicin , Flavones , Ginkgo biloba , Liver Neoplasms , Arginine/therapeutic use , Doxorubicin/therapeutic use , Flavones/therapeutic use , Ginkgo biloba/chemistry , Glutathione , Humans , Isoleucine/therapeutic use , Leucine/therapeutic use , Liver Neoplasms/drug therapy , Metabolomics/methods , Phenylalanine/therapeutic use , Proline , Tandem Mass Spectrometry/methods , Tyrosine/therapeutic use , Valine/therapeutic use , beta-Alanine/therapeutic use
15.
Molecules ; 27(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36080150

ABSTRACT

In this paper, detailed comparisons of the driving force in thermodynamics and intrinsic force in the kinetics of 1,2-dihydropyridine and 1,4-dihydropyridine isomers of PNAH, HEH, and PYH in hydride transfer reactions are made. For 1,2-PNAH and 1,4-PNAH, the values of the thermodynamic driving forces, kinetic intrinsic barriers, and thermo-kinetic parameters are 60.50 and 61.90 kcal/mol, 27.92 and 26.34 kcal/mol, and 44.21 and 44.12 kcal/mol, respectively. For 1,2-HEH and 1,4-HEH, the values of the thermodynamic driving forces, kinetic intrinsic barriers, and thermo-kinetic parameters are 63.40 and 65.00 kcal/mol, 31.68 and 34.96 kcal/mol, and 47.54 and 49.98 kcal/mol, respectively. For 1,2-PYH and 1,4-PYH, the order of thermodynamic driving forces, kinetic intrinsic barriers, and thermo-kinetic parameters are 69.90 and 72.60 kcal/mol, 33.06 and 25.74 kcal/mol, and 51.48 and 49.17 kcal/mol, respectively. It is not difficult to find that thermodynamically favorable structures are not necessarily kinetically favorable. In addition, according to the analysis of thermo-kinetic parameters, 1,4-PNAH, 1,2-HEH, and 1,4-PYH have a strong hydride-donating ability in actual chemical reactions.


Subject(s)
Dihydropyridines , Dihydropyridines/chemistry , Kinetics , Thermodynamics
16.
ACS Omega ; 7(30): 26416-26424, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35936422

ABSTRACT

In this work, kinetic studies on HEH2, 2-benzylmalononitrile, 2-benzyl-1H-indene-1,3(2H)-dione, 5-benzyl-2,2-dimethyl-1,3-dioxane-4,6-dione, 5-benzyl-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione, 2-(9H-fluoren-9-yl)malononitrile, ethyl 2-cyano-2-(9H-fluoren-9-yl)acetate, diethyl 2-(9H-fluoren-9-yl)malonate, and the derivatives (28 XH2) releasing two hydrogen atoms were carried out. The thermokinetic parameters ΔG ⧧° of 28 dihydrogen donors (XH2) and the corresponding hydrogen atom acceptors (XH•) in acetonitrile at 298 K were determined. The abilities of releasing two hydrogen atoms for these organic dihydrogen donors were researched using their thermokinetic parameters ΔG ⧧°(XH2), which can be used not only to compare the H-donating ability of different XH2 qualitatively and quantitatively but also to predict the rates of HAT reactions. Predictions of rate constants for 12 HAT reactions using thermokinetic parameters were determined, and the reliabilities of the predicted results were also examined.

17.
ACS Omega ; 7(29): 25555-25564, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35910187

ABSTRACT

The H-abstraction activity of a free radical is a research hotspot and has been extensively studied. In this article, the second-order rate constants of 21 HAT reactions in acetonitrile at 298 K were chosen from several published literature. A kinetic study on the H-abstraction reaction from TEMPOH by a DPPH• radical was carried out. This reaction was researched as an insertion point. By combining this reaction with the 21 HAT reactions in this paper, the thermokinetic parameters of 28 free radicals X and their corresponding antioxidants XH were obtained by the cross-HAT reaction method. The scales of the H-abstraction activities of these 28 oxygen and nitrogen free radicals were determined by using the thermokinetic parameters ΔG ≠o(X). Applications of the thermokinetic parameter ΔG ≠o(X) in assessing the actual H-abstraction activity of a free radical quantitatively and selecting a suitable free radical in scientific research and chemical production were discussed. Predictions of the rate constants by using thermokinetic parameters of reactants were researched, and the reliabilities of the predicted activation free energies of XH/Y reactions were also examined.

18.
J Org Chem ; 87(14): 9357-9374, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35786938

ABSTRACT

In this work, the pKa values of 69 polar alkanes (YH2) in acetonitrile were computed using the method developed by Luo and Zhang in 2020, and representative 69 thermodynamic network cards on 22 elementary steps of YH2 and related polar alkenes (Y) releasing or accepting H2 were naturally established. Potential electron reductants (YH-), hydride reductants (YH-), antioxidants (YH2 and YH-), and hydrogen molecule reductants (YH2) are unexpectedly discovered according to thermodynamic network cards. It is also found that there are great differences between YH2 and common hydrogen molecule reductants (XH2), such as Hantzsch ester (HEH2), benzothiazoline (BTH2), and dihydro-phenanthridine (PH2), releasing two hydrogen ions to unsaturated compounds. During the hydrogenation process, XH2 release hydrides first, then the oxidation state XH+ release protons. However, in the case of YH2, YH2 release protons first, then YH- release hydrides. It is the differences on acidic properties of YH2 and XH2 that result in the behavioral and thermodynamic differences on YH2 and XH2 releasing two hydrogen ions (H--H+). The redox mechanisms and behaviors of Y, YH-, and YH2 as electron, hydrogen atom, hydride, and hydrogen molecule donors or acceptors in the chemical reaction are reasonably investigated and discussed in this paper using thermodynamics.


Subject(s)
Protons , Reducing Agents , Alkanes , Hydrogen/chemistry , Thermodynamics
19.
Front Microbiol ; 12: 666782, 2021.
Article in English | MEDLINE | ID: mdl-33981294

ABSTRACT

Plasmid-mediated colistin resistance gene mcr-1 generally confers low-level resistance. The purpose of this study was to investigate the impact of mcr-1 on the development of high-level colistin resistance (HLCR) in Klebsiella pneumoniae and Escherichia coli. In this study, mcr-1-negative K. pneumoniae and E. coli strains and their corresponding mcr-1-positive transformants were used to generate HLCR mutants via multiple passages in the presence of increasing concentrations of colistin. We found that for K. pneumoniae, HLCR mutants with minimum inhibitory concentrations (MICs) of colistin from 64 to 1,024 mg/L were generated. Colistin MICs increased 256- to 4,096-fold for mcr-1-negative K. pneumoniae strains but only 16- to 256-fold for the mcr-1-harboring transformants. For E. coli, colistin MICs increased 4- to 64-folds, but only 2- to 16-fold for their mcr-1-harboring transformants. Notably, mcr-1 improved the survival rates of both E. coli and K. pneumoniae strains when challenged with relatively high concentrations of colistin. In HLCR K. pneumoniae mutants, amino acid alterations predominately occurred in crrB, followed by phoQ, crrA, pmrB, mgrB, and phoP, while in E. coli mutants, genetic alterations were mostly occurred in pmrB and phoQ. Additionally, growth rate analyses showed that the coexistence of mcr-1 and chromosomal mutations imposed a fitness burden on HLCR mutants of K. pneumoniae. In conclusion, HLCR was more likely to occur in K. pneumoniae strains than E. coli strains when exposed to colistin. The mcr-1 gene could improve the survival rates of strains of both bacterial species but could not facilitate the evolution of high-level colistin resistance.

20.
Bioorg Chem ; 111: 104881, 2021 06.
Article in English | MEDLINE | ID: mdl-33839584

ABSTRACT

Based on our previous study on the development of the furoquinolinedione and isoxazoloquinolinedione TDP2 inhibitors, the further structure-activity relationship (SAR) was studied in this work. A series of furoquinolinedione and isoxazoloquinolinedione derivatives were synthesized and tested for enzyme inhibitions. Enzyme-based assays indicated that isoxazoloquinolinedione derivatives selectively showed high TDP2 inhibitory activity at sub-micromolar range, as well as furoquinolinedione derivatives at low micromolar range. The most potent 3-(3,4-dimethoxyphenyl)isoxazolo[4,5-g]quinoline-4,9-dione (70) showed TDP2 inhibitory activity with IC50 of 0.46 ± 0.15 µM. This work will facilitate future efforts for the discovery of isoxazoloquinolinedione TDP2 selective inhibitors.


Subject(s)
DNA-Binding Proteins/antagonists & inhibitors , Phosphodiesterase Inhibitors/pharmacology , Quinolones/pharmacology , Animals , DNA-Binding Proteins/metabolism , Dose-Response Relationship, Drug , Humans , Mice , Models, Molecular , Molecular Structure , Phosphodiesterase Inhibitors/chemical synthesis , Phosphodiesterase Inhibitors/chemistry , Phosphoric Diester Hydrolases/metabolism , Quinolones/chemical synthesis , Quinolones/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...