Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Metabolites ; 13(8)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37623871

ABSTRACT

As the quality of life improves, there is an increasing demand for nutrition-rich marine organisms like fish, shellfish, and cephalopods. To address this, artificial cultivation of these organisms is being explored along with ongoing research on their growth and development. A case in point is Amphioctopus fangsiao, a highly valued cephalopod known for its tasty meat, nutrient richness, and rapid growth rate. Despite its significance, there is a dearth of studies on the A. fangsiao growth mechanism, particularly of its larvae. In this study, we collected A. fangsiao larvae at 0, 4, 12, and 24 h post-hatching and conducted transcriptome profiling. Our analysis identified 4467, 5099, and 4181 differentially expressed genes (DEGs) at respective intervals, compared to the 0 h sample. We further analyzed the expression trends of these DEGs, noting a predominant trend of continuous upregulation. Functional exploration of this trend entailed GO and KEGG functional enrichment along with protein-protein interaction network analyses. We identified GLDC, DUSP14, DPF2, GNAI1, and ZNF271 as core genes, based on their high upregulation rate, implicated in larval growth and development. Similarly, CLTC, MEF2A, PPP1CB, PPP1R12A, and TJP1, marked by high protein interaction numbers, were identified as hub genes and the gene expression levels identified via RNA-seq analysis were validated through qRT-PCR. By analyzing the functions of key and core genes, we found that the ability of A. fangsiao larvae to metabolize carbohydrates, lipids, and other energy substances during early growth may significantly improve with the growth of the larvae. At the same time, muscle related cells in A. fangsiao larvae may develop rapidly, promoting the growth and development of larvae. Our findings provide preliminary insights into the growth and developmental mechanism of A. fangsiao, setting the stage for more comprehensive understanding and broader research into cephalopod growth and development mechanisms.

2.
BMC Genomics ; 24(1): 503, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37649007

ABSTRACT

BACKGROUND: Cadmium (Cd) flows into the ocean with industrial and agricultural pollution and significantly affects the growth and development of economic cephalopods such as Sepia esculenta, Amphioctopus fangsiao, and Loligo japonica. As of now, the reasons why Cd affects the growth and development of S. esculenta are not yet clear. RESULTS: In this study, transcriptome and four oxidation and toxicity indicators are used to analyze the toxicological mechanism of Cd-exposed S. esculenta larvae. Indicator results indicate that Cd induces oxidative stress and metal toxicity. Functional enrichment analysis results suggest that larval ion transport, cell adhesion, and some digestion and absorption processes are inhibited, and the cell function is damaged. Comprehensive analysis of protein-protein interaction network and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was used to explore S. esculenta larval toxicological mechanisms, and we find that among the 20 identified key genes, 14 genes are associated with neurotoxicity. Most of them are down-regulated and enriched to the neuroactive ligand-receptor interaction signaling pathway, suggesting that larval nervous system might be destroyed, and the growth, development, and movement process are significantly affected after Cd exposure. CONCLUSIONS: S. esculenta larvae suffered severe oxidative damage after Cd exposure, which may inhibit digestion and absorption functions, and disrupt the stability of the nervous system. Our results lay a function for understanding larval toxicological mechanisms exposed to heavy metals, promoting the development of invertebrate environmental toxicology, and providing theoretical support for S. esculenta artificial culture.


Subject(s)
Sepia , Animals , Sepia/genetics , Decapodiformes , Agriculture , Cadmium/toxicity , Larva/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...