Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Insect Physiol ; 56(11): 1558-64, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20546744

ABSTRACT

The rice stem borer, Chilo suppressalis, enters facultative diapause as fully grown larvae in response to short-day conditions during the autumn. Our results showed that the critical night length for diapause induction in C. suppressalis was between 10 h 22 min and 10h 45 min at 22, 25 and 28 degrees C, 11 h 18 min at 31 degrees C, and between 10 h 5 min and 10 h 20 min under field conditions (average temperature ranged from 27.2 to 30.7 degrees C). The diapause incidence declined in ultra-long nights (18-22 h scotophases) and DD, and increased in ultra-short nights (2-6 h scotophases) and LL. Moreover, we found that the third instar was the stage most sensitive to the photoperiod, and night length played an essential role in the initiation of diapause. Night-interruption experiments with a 1-h light pulse at LD 12:12 (light 12:dark 12) exhibited two troughs of diapause inhibition, with one occurring in early scotophase and the other in late scotophase. Field observations for six years showed that most larvae entered winter diapause in August in response to declining day lengths, despite the high temperatures prevailing during August. By periodically transferring the field-collected overwintering larvae to different photoperiods and temperatures, the results showed that photoperiod had a significant influence on diapause development during the early phase of diapause, while high temperature significantly accelerated the termination of larval diapause.


Subject(s)
Metamorphosis, Biological/physiology , Moths/physiology , Animals , Larva/physiology , Photoperiod , Time Factors
2.
J Insect Physiol ; 55(5): 488-93, 2009 May.
Article in English | MEDLINE | ID: mdl-19183558

ABSTRACT

Photoperiodic control of diapause induction was systematically investigated in the cabbage butterfly, Pieris melete, which enters summer and winter diapause as a pupa. Summer and winter diapause are induced principally by short and long scotophases, respectively; the intermediate scotophases (11-12 h) permit pupae to develop without diapause. Photoperiodic responses under 24-h light-dark cycles at 16.9, 18, 20 and 22 degrees C showed that the hibernation response was temperature compensated, whereas aestivation response was strongly temperature-dependent. The incidence of diapause for both aestivation and hibernation showed a decline at the ultra-short and ultra-long scotophases. Experiments using non-24-h light-dark cycles showed that the length of the scotophase played an essential role in the determination of diapause. The highest photosensitivity differed under hibernation and aestivation conditions. With a 3 x LD 12:12 interruption, a maximal inhibition of aestivation occurred in the L3/2 stage, and of hibernation it occurred in the L4/0 stage. A long-night of LD 10:14 induced hibernation diapause but inhibited aestivation diapause and, conversely, a short-night of LD 14:10 inhibited hibernation diapause but induced aestivation diapause. With a 1-h light pulse at LD 11:13, a maximal inhibition of hibernation occurred 3 h before lights-on (late scotophase), whereas, with a 1-h light pulse at LD 12.5:11.5, a maximal induction of aestivation occurred 2-3 h after the onset of darkness (early scotophase). Nanda-Hamner and Bünsow experiments failed to reveal the involvement of a circadian system, suggesting that the photoperiodic time measurement for diapause induction in this butterfly resembles an hourglass-like timer or a damped circadian oscillator.


Subject(s)
Butterflies/growth & development , Animals , Biological Clocks/radiation effects , Brassica , Butterflies/physiology , Butterflies/radiation effects , Female , Light , Male , Metamorphosis, Biological , Photoperiod
SELECTION OF CITATIONS
SEARCH DETAIL