Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Cancer Commun (Lond) ; 44(3): 384-407, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38407942

ABSTRACT

BACKGROUND: Liver cancer is a malignancy with high morbidity and mortality rates. Serpin family E member 2 (SERPINE2) has been reported to play a key role in the metastasis of many tumors. In this study, we aimed to investigate the potential mechanism of SERPINE2 in liver cancer metastasis. METHODS: The Cancer Genome Atlas database (TCGA), including DNA methylation and transcriptome sequencing data, was utilized to identify the crucial oncogene associated with DNA methylation and cancer progression in liver cancer. Data from the TCGA and RNA sequencing for 94 pairs of liver cancer tissues were used to explore the correlation between SERPINE2 expression and clinical parameters of patients. DNA methylation sequencing was used to detect the DNA methylation levels in liver cancer tissues and cells. RNA sequencing, cytokine assays, immunoprecipitation (IP) and mass spectrometry (MS) assays, protein stability assays, and ubiquitination assays were performed to explore the regulatory mechanism of SERPINE2 in liver cancer metastasis. Patient-derived xenografts and tumor organoid models were established to determine the role of SERPINE2 in the treatment of liver cancer using sorafenib. RESULTS: Based on the public database screening, SERPINE2 was identified as a tumor promoter regulated by DNA methylation. SERPINE2 expression was significantly higher in liver cancer tissues and was associated with the dismal prognosis in patients with liver cancer. SERPINE2 promoted liver cancer metastasis by enhancing cell pseudopodia formation, cell adhesion, cancer-associated fibroblast activation, extracellular matrix remodeling, and angiogenesis. IP/MS assays confirmed that SERPINE2 activated epidermal growth factor receptor (EGFR) and its downstream signaling pathways by interacting with EGFR. Mechanistically, SERPINE2 inhibited EGFR ubiquitination and maintained its protein stability by competing with the E3 ubiquitin ligase, c-Cbl. Additionally, EGFR was activated in liver cancer cells after sorafenib treatment, and SERPINE2 knockdown-induced EGFR downregulation significantly enhanced the therapeutic efficacy of sorafenib against liver cancer. Furthermore, we found that SERPINE2 knockdown also had a sensitizing effect on lenvatinib treatment. CONCLUSIONS: SERPINE2 promoted liver cancer metastasis by preventing EGFR degradation via c-Cbl-mediated ubiquitination, suggesting that inhibition of the SERPINE2-EGFR axis may be a potential target for liver cancer treatment.


Subject(s)
Liver Neoplasms , Serpin E2 , Humans , ErbB Receptors/genetics , ErbB Receptors/metabolism , Liver Neoplasms/genetics , Proto-Oncogene Proteins c-cbl/genetics , Proto-Oncogene Proteins c-cbl/metabolism , Serpin E2/genetics , Serpin E2/metabolism , Sorafenib , Ubiquitination
2.
Adv Clin Exp Med ; 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38376452

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is the most common cause of primary brain malignancy. Recently, many immune-related long noncoding ribonucleic acids (ir-lncRNAs) are indicated to be closely related to the regulation of the immune microenvironment and immune cell infiltration of GBM. OBJECTIVES: Through the joint analysis of multiple public databases, key ir-lncRNAs in GBM were screened. The ir-lncRNAs were used to construct risk-scoring models and promote the development of novel GBM biomarkers. MATERIAL AND METHODS: In this study, we performed a three-way Venn analysis combined with a least absolute shrinkage and selection operator (LASSO) regression analysis on all lncRNAs in The Cancer Genome Atlas (TCGA), the Chinese Glioma Genome Atlas (CGGA) and Imm-Lnc datasets, and identified 10 ir-lncRNAs. Multivariate Cox analysis was used to calculate the coefficient and construct a risk-scoring model. RESULTS: By plotting calibration curves and receiver operating characteristic (ROC) curves, the model showed excellent prediction results. Based on the Tumor Immune Estimation Resource (TIMER) database, the correlation analysis showed that 10 ir-lncRNAs risk scores were related to immune cell infiltration. The enrichment analysis was subsequently performed, which showed that these ir-lncRNAs played an important role in the progression of GBM. Among the 10 lncRNAs, we found that AL354993.1 was highly expressed in GBM, had not been reported, and was shown to be closely related to GBM progression. CONCLUSIONS: In conclusion, the 10 ir-lncRNAs have the potential to predict the prognosis of GBM patients and may play a vital role in the progression of the disease.

3.
Int J Mol Sci ; 24(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37686300

ABSTRACT

Biliary obstruction diseases are often complicated by an impaired intestinal barrier, which aggravates liver injury. Treatment of the intestinal barrier is often neglected. To investigate the mechanism by which intestinal bile acid deficiency mediates intestinal barrier dysfunction after biliary obstruction and identify a potential therapeutic modality, we mainly used a bile duct ligation (BDL) mouse model to simulate biliary obstruction and determine the important role of the bile acid receptor FXR in maintaining intestinal barrier function and stemness. Through RNA-seq analysis of BDL and sham mouse crypts and qRT-PCR performed on intestinal epithelial-specific Fxr knockout (FxrΔIEC) and wild-type mouse crypts, we found that FXR might maintain intestinal stemness by regulating CYP11A1 expression. Given the key role of CYP11A1 during glucocorticoid production, we also found that FXR activation could promote intestinal corticosterone (CORT) synthesis by ELISA. Intestinal organoid culture showed that an FXR agonist or corticosterone increased crypt formation and organoid growth. Further animal experiments showed that corticosterone gavage treatment could maintain intestinal barrier function and stemness, decrease LPS translocation, and attenuate liver injury in BDL mice. Our study hopefully provides a new theoretical basis for the prevention of intestinal complications and alleviation of liver injury after biliary obstruction.


Subject(s)
Cholestasis , Corticosterone , Animals , Mice , Bile Acids and Salts , Cholesterol Side-Chain Cleavage Enzyme , Intestines
4.
Biochem Biophys Res Commun ; 640: 1-11, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36495604

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) was one of the most prevalent life-threatening cancers. Metastasis is the leading cause of cancer-related death in HCC. MiRNAs play essential roles in cancer metastasis. METHODS: Expression of miR-652-3p in HCC was assessed. Function experiments of miR-652-3p and trinucleotide repeat-containing gene 6A protein (TNRC6A) were performed both in vitro and in vivo. mRNA sequencing, PCR, and western blot were performed to verify the target genes and pathway of miR-652-3p. The lung metastasis and xenograft cancer model in nude mice was established to investigate the effects of the miR-652-3p and TRNC6A on tumor metastasis in vivo. The relationship between the expression of the miR-652-3p, TNRC6A and the prognosis of HCC patients was analyzed. RESULTS: Upregulated miR-652-3p was found in the tumor tissues of HCC, especially in metastatic HCC patients. Overexpression of miR-652-3p promoted and knockdown of miR-652-3p suppressed HCC metastasis both in vitro and in vivo. MiR-652-3p promoted HCC metastasis via regulating the EMT pathway. TNRC6A was identified as a direct target of miR-652-3p, and the knockdown of TNRC6A restored repressed EMT and HCC metastasis caused by the inhibition of miR-652-3p. Clinical results revealed that high expression of miR-652-3p and low expression of TNRC6A were positively correlated to shortened overall survival and disease-free survival in HCC patients. CONCLUSIONS: MiR-652-3p promotes EMT and HCC metastasis by inhibiting TNRC6A expression in HCC. MiR-652-3p and TNRC6A may serve as potential biomarkers to predict prognosis in HCC patients with metastasis.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Animals , Humans , Mice , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Liver Neoplasms/pathology , Mice, Nude , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasm Metastasis
5.
Shock ; 59(3): 385-392, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36567548

ABSTRACT

ABSTRACT: Objective: The aim of the study is to screen transcription factor genes related to the prognosis of adult patients with sepsis. Methods: Twenty-three patients with sepsis and 10 healthy individuals admitted for RNA-seq. Differential factors were enriched by four transcription factor databases, and survival analysis was adopted for core factors. Then, target genes were submitted to STRING to constitute the protein-protein interaction network. Single-cell technology was used to localize cell lines. Finally, a transcription-target gene regulation network was constituted. Results: A total of 4,224 differentially expressed genes were obtained between sepsis and normal control groups. Protein-protein interaction results showed that FOXO3, NFKB1, SPI1, STAT5A, and PPARA were located in the center of the network. Target genes were related to cytokine-mediated signaling pathway and transcription regulator activity, etc. SPI1 was mainly located in monocyte cell lines, while FOXO3, PPARA, SP1, STAT3, and USF1 were expressed in monocyte cell lines, NK-T cell lines, and B cell lines. Compared with those in the control group, FOXO3, SP1, SPI1, STAT3, and USF1 were highly expressed in the sepsis group, while PPARA had low expression. Conclusions: Transcription factors, such as FOXO3, PPARA, SP1, SPI1, STAT3, and USF1, are correlated with the prognosis of sepsis patients and thus may have a potential research value. Clinical Trial Registration: The clinical trial registration number is ChiCTR1900021261.


Subject(s)
Gene Expression Regulation , Sepsis , Humans , Adult , Gene Regulatory Networks , Protein Interaction Maps/genetics , Sepsis/metabolism , Prognosis , Computational Biology/methods , Gene Expression Profiling
6.
Adv Sci (Weinh) ; 9(29): e2201931, 2022 10.
Article in English | MEDLINE | ID: mdl-36026578

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC), one of the worst prognosis types of tumors, is characterized by dense extracellular matrix, which compresses tumor vessels and forms a physical barrier to inhibit therapeutic drug penetration and efficacy. Herein, losartan, an antihypertension agent, is applied as a tumor stroma modulator and developed into a nanosystem. A series of lipophilic losartan prodrugs are constructed by esterification of the hydroxyl group on losartan to fatty acids. Based on the self-assembly ability and hydrodynamic diameter, the losartan-linoleic acid conjugate is selected for further investigation. To improve the stability in vivo, nanoassemblies are refined with PEGylation to form losartan nanoblocker (Los NB), and administered via intravenous injection for experiments. On murine models of pancreatic cancer, Los NB shows a greater ability to remodel the tumor microenvironment than free losartan, including stromal depletion, vessel perfusion increase, and hypoxia relief. Furthermore, Los NB pretreatment remarkably enhances the accumulation and penetration of 7-ethyl-10-hydroxycamptothecin (SN38)-loaded nanodrugs (SN38 NPs) in tumor tissues. Expectedly, overall therapeutic efficacy of SN38 NPs is significantly enhanced after Los NB pretreatment. Since losartan is one of the most commonly used antihypertension agents, this study may provide a potential for clinical transformation in stroma-rich PDAC treatment.


Subject(s)
Antineoplastic Agents , Carcinoma, Pancreatic Ductal , Nanoparticles , Pancreatic Neoplasms , Prodrugs , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma, Pancreatic Ductal/drug therapy , Cell Line, Tumor , Fatty Acids/therapeutic use , Irinotecan/therapeutic use , Linoleic Acids/therapeutic use , Losartan/pharmacology , Losartan/therapeutic use , Mice , Pancreatic Neoplasms/drug therapy , Perfusion , Prodrugs/therapeutic use , Tumor Microenvironment , Pancreatic Neoplasms
7.
Cancer Res ; 82(21): 3987-4000, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36043912

ABSTRACT

Liver cancer is characterized by aggressive growth and high mortality. Asialoglycoprotein receptor 1 (ASGR1), which is expressed almost exclusively in liver cells, is reduced in liver cancer. However, the specific mechanism of ASGR1 function in liver cancer has not been fully elucidated. On the basis of database screening, we identified ASGR1 as a tumor suppressor regulated by DNA methylation. Expression of ASGR1 was downregulated in liver cancer and correlated with tumor size, grade, and survival. Functional gain and loss experiments showed that ASGR1 suppresses the progression of liver cancer in vivo and in vitro. RNA sequencing and mass spectrometry showed that ASGR1 inhibits tyrosine phosphorylation of STAT3 by interacting with Nemo-like kinase (NLK). NLK bound the SH2 domain of STAT3 in an ATP-dependent manner and competed with glycoprotein 130 (GP130), ultimately suppressing GP130/JAK1-mediated phosphorylation of STAT3. ASGR1 altered the binding strength of NLK and STAT3 by interacting with GP130. Furthermore, the domain region of NLK was crucial for binding STAT3 and curbing its phosphorylation. Collectively, these results confirm that ASGR1 suppresses the progression of liver cancer by promoting the binding of NLK to STAT3 and inhibiting STAT3 phosphorylation, suggesting that approaches to activate the ASGR1-NLK axis may be a potential therapeutic strategy in this disease. SIGNIFICANCE: ASGR1 downregulation by DNA methylation facilitates liver tumorigenesis by increasing STAT3 phosphorylation.


Subject(s)
Liver Neoplasms , Humans , Asialoglycoprotein Receptor/genetics , Asialoglycoprotein Receptor/metabolism , Cytokine Receptor gp130 , Liver Neoplasms/pathology , STAT3 Transcription Factor/metabolism , Phosphorylation , src Homology Domains , Protein Serine-Threonine Kinases
8.
Oncogene ; 41(22): 3118-3130, 2022 05.
Article in English | MEDLINE | ID: mdl-35477750

ABSTRACT

Targeting cytokinesis can suppress tumor growth by blocking cell division and promoting apoptosis. We aimed to characterize key cytokinesis regulator in hepatocellular carcinoma (HCC) progression, providing insights into identifying promising HCC therapeutic targets. The unbiased bioinformatic screening identified Anillin actin binding protein (ANLN) as a critical cytokinesis regulator involved in HCC development. Functional assay demonstrated that knockdown of ANLN inhibited HCC growth by inducing cytokinesis failure and DNA damage, leading to multinucleation and mitotic catastrophe. Mechanistically, ANLN acts as a scaffold to strengthen interaction between RACGAP1 and PLK1. ANLN promotes PLK1-mediated RACGAP1 phosphorylation and RhoA activation to ensure cytokinesis fidelity. To explore the function of ANLN in HCC tumorigenesis, we hydrodynamically transfected c-Myc and NRAS plasmids into Anln+/+, Anln+/-, and Anln-/- mice through tail vein injection. Hepatic Anln ablation significantly impaired c-Myc/NRAS-driven hepatocarcinogenesis. Moreover, enhanced hepatic polyploidization was observed in Anln ablation mice, manifesting as increasing proportion of cellular and nuclear polyploidy. Clinically, ANLN is upregulated in human HCC tissues and high level of ANLN is correlated with poor patients' prognosis. Additionally, the proportion of cellular polyploidy decreases during HCC progression and ANLN level is significantly correlated with cellular polyploidy proportion in human HCC samples. In conclusion, ANLN is identified as a key cytokinesis regulator contributing to HCC initiation and progression. Our findings revealed a novel mechanism of ANLN in the regulation of cytokinesis to promote HCC tumorigenesis and growth, suggesting targeting ANLN to inhibit cytokinesis may be a promising therapeutic strategy for HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Cell Transformation, Neoplastic/genetics , Contractile Proteins , Cytokinesis/genetics , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/pathology , Mice , Microfilament Proteins/metabolism , Polyploidy
9.
Theranostics ; 11(5): 2318-2333, 2021.
Article in English | MEDLINE | ID: mdl-33500727

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide, and its specific mechanism has not been fully elucidated. Inactivation of tumor suppressors may contribute to the occurrence, progression, and recurrence of HCC. DNA methylation is a crucial mechanism involved in regulating the occurrence of HCC. Herein, we aimed to identify the key methylation-related tumor suppressors as well as potential biomarkers and therapeutic targets in HCC. Methods: Combined analysis of TCGA and GEO databases was performed to obtain potential methylation-related tumor suppressors in HCC. Methyl-target sequencing was performed to analyze the methylation level of the GNA14 promoter. The diagnostic value of GNA14 as a predictor of HCC was evaluated in HCC tumor samples and compared with normal tissues. The functional role of GNA14 and its upstream and downstream regulatory factors were investigated by gain-of-function and loss-of-function assays in vitro. Subcutaneous tumorigenesis, lung colonization, and orthotopic liver tumor model were performed to analyze the role of GNA14 in vivo.Results: The expression of GNA14 was found to be downregulated in HCC and it was negatively correlated with hepatitis B virus (HBV) infection, vascular invasion, and prognosis of HCC. DNA methylation was demonstrated to be responsible for the altered expression of GNA14 and was regulated by HBV-encoded X protein (HBx). GNA14 regulated the RB pathway by promoting Notch1 cleavage to inhibit tumor proliferation, and might inhibit tumor metastasis by inhibiting the expression of JMJD6. Conclusion: GNA14 could be regulated by HBx by modulating the methylation status of its promoter. We identified GNA14 as a potential biomarker and therapeutic target for HCC.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/pathology , DNA Methylation , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , Gene Expression Regulation, Neoplastic , Hepatitis B/complications , Liver Neoplasms/pathology , Animals , Apoptosis , Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/virology , Cell Proliferation , Female , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Hepatitis B/virology , Hepatitis B virus/isolation & purification , Humans , Liver Neoplasms/genetics , Liver Neoplasms/virology , Mice , Mice, Nude , Prognosis , Promoter Regions, Genetic , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
10.
J Cell Mol Med ; 24(21): 12848-12861, 2020 11.
Article in English | MEDLINE | ID: mdl-33029898

ABSTRACT

The farnesoid X receptor (FXR), as a bile acid (BA) sensor, plays an important role in the regulation of lipid metabolism. However, the effects and underlying molecular mechanisms of FXR on intestinal glucose homeostasis remain elusive. Herein, we demonstrated that FXR and glucose transporter 2 (GLUT2) are essential for BA-mediated glucose homeostasis in the intestine. BA-activated FXR enhanced glucose uptake in intestinal epithelial cells by increasing the expression of GLUT2, which depended on ERK1/2 phosphorylation via S1PR2. However, it also reduced the cell energy generation via inhibition of oxidative phosphorylation, which is crucial for intestinal glucose transport. Moreover, BA-activated FXR signalling potently inhibited specific glucose flux through the intestinal epithelium to the circulation, which reduced the increase in blood glucose levels in mice following oral glucose administration. This trend was supported by the changed ratio of GLUT2 to SGLT1 in the brush border membrane (BBM), including especially decreased GLUT2 abundance in the BBM. Furthermore, impaired intestinal FXR signalling was observed in the patients with intestinal bile acid deficiency (IBAD). These findings uncover a novel function by which FXR sustains the intestinal glucose homeostasis and provide a rationale for FXR agonists in the treatment of IBAD-related hyperglycaemia.


Subject(s)
Bile Acids and Salts/metabolism , Glucose/metabolism , Homeostasis , Intestines/physiology , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Biological Transport/drug effects , Cell Line , Chenodeoxycholic Acid/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Glucose Transporter Type 2/metabolism , Homeostasis/drug effects , Humans , Intestines/drug effects , Male , Mice, Inbred C57BL , Microvilli/drug effects , Microvilli/metabolism , Phosphorylation/drug effects , Rats , Signal Transduction , Sphingosine-1-Phosphate Receptors/metabolism
11.
Int J Biol Sci ; 16(12): 2029-2041, 2020.
Article in English | MEDLINE | ID: mdl-32549751

ABSTRACT

Significant enhancement of the glycolysis pathway is a major feature of tumor cells, even in the presence of abundant oxygen; this enhancement is known as the Warburg effect, and also called aerobic glycolysis. The Warburg effect was discovered nearly a hundred years ago, but its specific mechanism remains difficult to explain. DNA methylation is considered to be a potential trigger for the Warburg effect, as the two processes have many overlapping links during tumorigenesis. Based on a widely recognized potential mechanism of the Warburg effect, we here summarized the relationship between DNA methylation and the Warburg effect with regard to cellular energy metabolism factors, such as glycolysis related enzymes, mitochondrial function, glycolysis bypass pathways, the tumor oxygen sensing pathway and abnormal methylation conditions. We believe that clarifying the relationship between these different mechanisms may further help us understand how DNA methylation works on tumorigenesis and provide new opportunities for cancer therapy.


Subject(s)
DNA Methylation/physiology , Neoplasms/metabolism , Warburg Effect, Oncologic , Animals , DNA, Mitochondrial/genetics , Humans , Mitochondria/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...