Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Molecules ; 29(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38611855

ABSTRACT

Quinoa, known as the "golden grain" for its high nutritional value, has polysaccharides as one of its sources of important nutrients. However, the biological functions of quinoa polysaccharides remain understudied. In this study, two crude polysaccharide extracts of quinoa (Q-40 and Q-60) were obtained through sequential precipitation with 40% and 60% ethanol, with purities of 58.29% (HPLC) and 62.15% (HPLC) and a protein content of 8.27% and 9.60%, respectively. Monosaccharide analysis revealed that Q-40 contained glucose (Glc), galacturonic acid (GalA), and arabinose (Ara) in a molar ratio of 0.967:0.027:0.006. Q-60 was composed of xylose (xyl), arabinose (Ara), galactose, and galacturonic acid (GalA) with a molar ratio of 0.889:0.036:0.034:0.020. The average molecular weight of Q-40 ranged from 47,484 to 626,488 Da, while Q-60 showed a range of 10,025 to 47,990 Da. Rheological experiments showed that Q-40 exhibited higher viscosity, while Q-60 demonstrated more elastic properties. Remarkably, Q-60 showed potent antioxidant abilities, with scavenging rates of 98.49% for DPPH and 57.5% for ABTS. Antibacterial experiments using the microdilution method revealed that Q-40 inhibited the growth of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli), while Q-60 specifically inhibited MRSA. At lower concentrations, both polysaccharides inhibited MDA (MD Anderson Cancer Center) cell proliferation, but at higher concentrations, they promoted proliferation. Similar proliferation-promoting effects were observed in HepG2 cells. The research provides important information in the application of quinoa in the food and functional food industries.


Subject(s)
Chenopodium quinoa , Hexuronic Acids , Methicillin-Resistant Staphylococcus aureus , Arabinose , Escherichia coli , Edible Grain
2.
Int J Biol Macromol ; 258(Pt 2): 128833, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38128806

ABSTRACT

Natural polysaccharides exhibit numerous beneficial properties, such as antioxidant, antitumor, hypoglycemic, and hypolipidemic activities. Moringa oleifera seeds are of high dietary and therapeutic value which drew a lot of attention. However, the regulation effect on anti-inflammatory activity of polysaccharides remains to be studied. Herein, novel bioactive polysaccharides (MOSP-1) were extracted from Moringa oleifera seeds, and the anti-inflammatory properties of MOSP-1 were uncovered. Ultrasound-assisted extraction (UAE) was used to prepare the polysaccharides with optimized conditions (70 °C, 43 min, and liquid-solid-ratio 15 mL/g). Then, DEAE-Sepharose Fast Flow columns were applied to isolate and purify MOSP-1. Rhamnose, arabinose, galactose, and glucose were identified as the monosaccharide constituents of MOSP-1, with a molecular weight of 5.697 kDa. Their proportion in molarity was 1:0.183:0.108:0.860 and 8 types of glycosidic linkages were discovered. Bioactive assays showed that MOSP-1 possessed scavenging activities against DPPH and ABTS radicals, confirming its potential antioxidation efficacy. In vitro experiments revealed that MOSP-1 could reduce the expression of inflammation-related cytokines, inhibit the activation of ERK, JNK, and p38 (the MAPK signaling pathway), and enhance phagocytic functions. This study indicates that polysaccharides (MOSP-1) from Moringa oleifera seeds with anti-inflammatory properties may be used for functional food and pharmaceutical product development.


Subject(s)
Moringa oleifera , Moringa oleifera/chemistry , Ultrasonics , Polysaccharides/chemistry , Antioxidants/chemistry , Anti-Inflammatory Agents , Seeds/chemistry
3.
bioRxiv ; 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37961357

ABSTRACT

Purpose: To evaluate methods for quantification of pulmonary ventilation with ultrashort echo time (UTE) MRI. Methods: We performed a reproducibility study, acquiring two free-breathing 1H UTE lung MRIs on the same day for six healthy volunteers. The 1) 3D + t cyclic b-spline and 2) symmetric image normalization (SyN) methods for image registration were applied after respiratory phase-resolved image reconstruction. Ventilation maps were calculated using 1) Jacobian determinant of the deformation fields minus one, termed regional ventilation, and 2) intensity percentage difference between the registered and fixed image, termed specific ventilation. We compared the reproducibility of all four method combinations via statistical analysis. Results: Split violin plots and Bland-Altman plots are shown for whole lungs and lung sections. The cyclic b-spline registration and Jacobian determinant regional ventilation quantification provide total ventilation volumes that match the segmentation tidal volume, smooth and uniform ventilation maps. The cyclic b-spline registration and specific ventilation combination yields the smallest standard deviation in the Bland-Altman plot. Conclusion: Cyclic registration performs better than SyN for respiratory phase-resolved 1H UTE MRI ventilation quantification. Regional ventilation correlates better with segmentation lung volume, while specific ventilation is more reproducible.

4.
J Transl Med ; 21(1): 503, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37495991

ABSTRACT

Mitochondria play important roles in maintaining cellular homeostasis and skeletal muscle health, and damage to mitochondria can lead to a series of pathophysiological changes. Mitochondrial dysfunction can lead to skeletal muscle atrophy, and its molecular mechanism leading to skeletal muscle atrophy is complex. Understanding the pathogenesis of mitochondrial dysfunction is useful for the prevention and treatment of skeletal muscle atrophy, and finding drugs and methods to target and modulate mitochondrial function are urgent tasks in the prevention and treatment of skeletal muscle atrophy. In this review, we first discussed the roles of normal mitochondria in skeletal muscle. Importantly, we described the effect of mitochondrial dysfunction on skeletal muscle atrophy and the molecular mechanisms involved. Furthermore, the regulatory roles of different signaling pathways (AMPK-SIRT1-PGC-1α, IGF-1-PI3K-Akt-mTOR, FoxOs, JAK-STAT3, TGF-ß-Smad2/3 and NF-κB pathways, etc.) and the roles of mitochondrial factors were investigated in mitochondrial dysfunction. Next, we analyzed the manifestations of mitochondrial dysfunction in muscle atrophy caused by different diseases. Finally, we summarized the preventive and therapeutic effects of targeted regulation of mitochondrial function on skeletal muscle atrophy, including drug therapy, exercise and diet, gene therapy, stem cell therapy and physical therapy. This review is of great significance for the holistic understanding of the important role of mitochondria in skeletal muscle, which is helpful for researchers to further understanding the molecular regulatory mechanism of skeletal muscle atrophy, and has an important inspiring role for the development of therapeutic strategies for muscle atrophy targeting mitochondria in the future.


Subject(s)
Muscular Atrophy , Phosphatidylinositol 3-Kinases , Humans , Phosphatidylinositol 3-Kinases/metabolism , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Muscle, Skeletal/metabolism , Mitochondria/metabolism , Signal Transduction , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
5.
Magn Reson Med ; 90(3): 1101-1113, 2023 09.
Article in English | MEDLINE | ID: mdl-37158318

ABSTRACT

PURPOSE: Three-dimensional UTE MRI has shown the ability to provide simultaneous structural and functional lung imaging, but it is limited by respiratory motion and relatively low lung parenchyma SNR. The purpose of this paper is to improve this imaging by using a respiratory phase-resolved reconstruction approach, named motion-compensated low-rank reconstruction (MoCoLoR), which directly incorporates motion compensation into a low-rank constrained reconstruction model for highly efficient use of the acquired data. THEORY AND METHODS: The MoCoLoR reconstruction is formulated as an optimization problem that includes a low-rank constraint using estimated motion fields to reduce the rank, optimizing over both the motion fields and reconstructed images. The proposed reconstruction along with XD and motion state-weighted motion-compensation (MostMoCo) methods were applied to 18 lung MRI scans of pediatric and young adult patients. The data sets were acquired under free-breathing and without sedation with 3D radial UTE sequences in approximately 5 min. After reconstruction, they went through ventilation analyses. Performance across reconstruction regularization and motion-state parameters were also investigated. RESULTS: The in vivo experiments results showed that MoCoLoR made efficient use of the data, provided higher apparent SNR compared with state-of-the-art XD reconstruction and MostMoCo reconstructions, and yielded high-quality respiratory phase-resolved images for ventilation mapping. The method was effective across the range of patients scanned. CONCLUSION: The motion-compensated low-rank regularized reconstruction approach makes efficient use of acquired data and can improve simultaneous structural and functional lung imaging with 3D-UTE MRI. It enables the scanning of pediatric patients under free-breathing and without sedation.


Subject(s)
Imaging, Three-Dimensional , Lung , Young Adult , Humans , Child , Imaging, Three-Dimensional/methods , Lung/diagnostic imaging , Magnetic Resonance Imaging/methods , Respiration
6.
Front Nutr ; 10: 1158158, 2023.
Article in English | MEDLINE | ID: mdl-37090775

ABSTRACT

Cyclocarya paliurus (C. paliurus), a nutritional and nutraceutical resource for human and animal diets, has been constantly explored. The available biological components of C. paliurus were triterpenoids, polysaccharides, and flavonoids. Recent studies in phytochemical-phytochemistry; pharmacological-pharmacology has shown that C. paliurus performed medicinal value, such as antihypertensive, antioxidant, anticancer, antimicrobial, anti-inflammatory and immunological activities. Furthermore, C. paliurus and its extracts added to drinks would help to prevent and mitigate chronic diseases. This review provides an overview of the nutritional composition and functional applications of C. paliurus, summarizing the research progress on the extraction methods, structural characteristics, and biological activities. Therefore, it may be a promising candidate for developing functional ingredients in traditional Chinese medicine. However, a more profound understanding of its active compounds and active mechanisms through which they perform biological activities is required. As a result, the plant needs further investigation in vitro and in vivo.

7.
J Agric Food Chem ; 71(12): 4817-4824, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36935587

ABSTRACT

The goal of this study was to expand the applications of bamboo leaf flavonoids (BLFs) by improving their lipophilicity through enzymatic acylation with vinyl cinnamate. Characterization of the acylated BLFs using Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, high-resolution electrospray ionization mass spectrometry, electrospray ionization with tandem mass spectrometry, and 1H nuclear magnetic resonance spectroscopy indicated that acylation occurred at the C6-OH position of glucoside moieties. The highest degree of acylation (18.61%) was obtained by reacting BLFs with vinyl cinnamate (1:5, w/w) at 60 °C for 48 h. Acylation significantly improved the lipophilicity of BLFs and their capacity to inhibit lipid peroxidation, as evidenced by the reduced production of lipid hydroperoxides and malondialdehyde in rapeseed oil and rapeseed oil-in-water emulsions during storage at 37 °C for 15 days. The study findings provide important data that will enable the use of BLFs in lipid or lipophilic matrices, such as oil-based foods.


Subject(s)
Antioxidants , Flavonoids , Antioxidants/chemistry , Flavonoids/chemistry , Rapeseed Oil , Acylation , Plant Leaves/chemistry
8.
Bioengineering (Basel) ; 10(1)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36671663

ABSTRACT

Manual prescription of the field of view (FOV) by MRI technologists is variable and prolongs the scanning process. Often, the FOV is too large or crops critical anatomy. We propose a deep learning framework, trained by radiologists' supervision, for automating FOV prescription. An intra-stack shared feature extraction network and an attention network are used to process a stack of 2D image inputs to generate scalars defining the location of a rectangular region of interest (ROI). The attention mechanism is used to make the model focus on a small number of informative slices in a stack. Then, the smallest FOV that makes the neural network predicted ROI free of aliasing is calculated by an algebraic operation derived from MR sampling theory. The framework's performance is examined quantitatively with intersection over union (IoU) and pixel error on position and qualitatively with a reader study. The proposed model achieves an average IoU of 0.867 and an average ROI position error of 9.06 out of 512 pixels on 80 test cases, significantly better than two baseline models and not significantly different from a radiologist. Finally, the FOV given by the proposed framework achieves an acceptance rate of 92% from an experienced radiologist.

9.
Int J Cardiovasc Imaging ; 39(5): 1001-1011, 2023 May.
Article in English | MEDLINE | ID: mdl-36648573

ABSTRACT

This study aimed to assess the image quality and accuracy of respiratory-gated real-time two-dimensional (2D) cine incorporating deep learning reconstruction (DLR) for the quantification of biventricular volumes and function compared with those of the standard reference, that is, breath-hold 2D balanced steady-state free precession (bSSFP) cine, in an adult population. Twenty-four patients (15 men, mean age 50.7 ± 16.5 years) underwent cardiac magnetic resonance for clinical indications, and 2D DLR and bSSFP cine were acquired on the short-axis view. The image quality scores were based on three main criteria: blood-to-myocardial contrast, endocardial edge delineation, and presence of motion artifacts throughout the cardiac cycle. Biventricular end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), ejection fraction (EF), and left ventricular mass (LVM) were analyzed. The 2D DLR cine had significantly shorter scan time than bSSFP (41.0 ± 11.3 s vs. 327.6 ± 65.8 s; p < 0.0001). Despite an analysis of endocardial edge definition and motion artifacts showed significant impairment using DLR cine compared with bSSFP (p < 0.01), the two sequences demonstrated no significant difference in terms of biventricular EDV, ESV, SV, and EF (p > 0.05). Moreover, the linear regression yielded good agreement between the two techniques (r ≥ 0.76). However, the LVM was underestimated for DLR cine (109.8 ± 34.6 g) compared with that for bSSFP (116.2 ± 40.2 g; p = 0.0291). Respiratory-gated 2D DLR cine is a reliable technique that could be used in the evaluation of biventricular volumes and function in an adult population.


Subject(s)
Deep Learning , Male , Adult , Humans , Middle Aged , Aged , Reproducibility of Results , Predictive Value of Tests , Magnetic Resonance Imaging, Cine/methods , Stroke Volume , Ventricular Function
10.
Front Neurol ; 13: 1013819, 2022.
Article in English | MEDLINE | ID: mdl-36504640

ABSTRACT

Background: The benefit of intravenous alteplase before endovascular thrombectomy is unclear in patients with acute cardioembolic stroke. Methods: We collected cardioembolic (CE) stroke patient data from the multicentre randomized clinical trial of Direct Intra-arterial Thrombectomy to Revascularize Acute Ischaemic Stroke Patients with Large Vessel Occlusion Efficiently in Chinese Tertiary Hospitals (DIRECT-MT). The primary outcome was the 90-day modified Rankin Scale (mRS) score. Five subgroups of cardioembolic stroke patients were analyzed. A multivariable ordinal logistic regression analysis analyzed the difference in the primary outcome between the direct mechanical thrombectomy (MT) and bridging therapy groups. An interaction term was entered into the model to test for subgroup interaction. The DIRECT-MT trial is registered with clinicaltrials.gov Identifier: NCT03469206. Results: A total of 290 CE stroke patients from the DIRECT-MT trial were enrolled in this study: 146 patients in the direct MT group and 144 patients in the bridging therapy group. No difference between the two treatment groups in the primary outcome was found (adjusted common odds ratio, 1.218; 95% confidence interval, 0.806 to 1.841; P = 0.34). In the subgroup analysis, CE stroke patients with an NIHSS ≤ 15 in the direct MT group were associated with better outcomes (47 vs. 53, acOR, 3.14 [1.497, 6.585]) and lower mortality (47 vs. 53, aOR, 0.16 [0.026, 0.986]) than those in the bridging therapy group, while there were no significant differences between the two treatment groups in the outcome and mortality of CE stroke patients with an NIHSS >15. Conclusion: Mild and moderate cardioembolic stroke patients may benefit more from direct mechanical thrombectomy than bridging therapy. This need to be confirmed by further prospective studies in a larger number of patients.

11.
Molecules ; 27(19)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36234873

ABSTRACT

Phenolic compounds from the flower of Clitoria ternatea L. (PCFCTL) were extracted using a high-speed shearing extraction technique and purified by AB-8 macroporous resins, and the phytochemical composition of the purified phenolic compounds from the flower of Clitoria ternatea L. (PPCFCTL) was then analyzed. Subsequently, its bioactivities including antioxidant properties, enzyme inhibitory activities, and antiproliferative activities against several tumor cell lines were evaluated. Results indicated that the contents of total phenolics, flavonoids, flavonols, flavanols, and phenolic acids in PPCFCTL were increased by 3.29, 4.11, 2.74, 2.43, and 2.96-fold, respectively, compared with those before being purified by AB-8 macroporous resins. The results showed PPCFCTL have significant antioxidant ability (measured by reducing power, RP, and ferric reducing antioxidant power method, FRAP) and good DPPH, ABTS+, and superoxide anion radical scavenging activities. They can also significantly inhibit lipase, α-amylase, and α-glucosidase. In addition, morphological changes of HeLa, HepG2, and NCI-H460 tumor cells demonstrated the superior antitumor performance of PPCFCTL. However, the acetylcholinesterase inhibitory activity was relatively weak. These findings suggest that PPCFCTL have important potential as natural antioxidant, antilipidemic, anti-glycemic and antineoplastic agents in health-promoting foods.


Subject(s)
Clitoria , Acetylcholinesterase , Antioxidants/chemistry , Clitoria/chemistry , Flavonoids/analysis , Flavonoids/pharmacology , Flavonols/analysis , Flowers/chemistry , Lipase/analysis , Phenols/analysis , Phenols/pharmacology , Phytochemicals/analysis , Phytochemicals/pharmacology , Plant Extracts/analysis , Plant Extracts/pharmacology , Superoxides/analysis , alpha-Amylases , alpha-Glucosidases
12.
Molecules ; 27(8)2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35458651

ABSTRACT

Chenopodium quinoa Willd. is recognized to be an excellent nutrient with high nutritional content. However, few genotypes of quinoa were analyzed, so we found a knowledge gap in the comparison of quinoa seeds of different genotypes. This study aims to compare the physicochemical, antioxidant, and anticancer properties of seed oil from three C. quinoa genotypes. Seeds of three genotypes (white, red, and black) were extracted with hexane and compared in this study. The oil yields of these quinoa seeds were 5.68-6.19% which contained predominantly polyunsaturated fatty acids (82.78-85.52%). The total tocopherol content ranged from 117.29 to 156.67 mg/kg and mainly consisted of γ-tocopherol. Total phytosterols in the three oils ranged from 9.4 to 12.2 g/kg. Black quinoa seed oil had the highest phytosterols followed by red and white quinoas. The chemical profile of quinoa seed oils paralleled by their antioxidant and anticancer activities in vitro was positively correlated with the seed coat color. Black quinoa seed oil had the best antioxidant and anti-proliferation effect on HCT 116 cells by the induction of apoptosis in a dose-dependent manner, which may play more significant roles in the chemoprevention of cancer and other diseases related to oxidative stress as a source of functional foods.


Subject(s)
Chenopodium quinoa , Phytosterols , Antioxidants/analysis , Antioxidants/pharmacology , Chenopodium quinoa/chemistry , Genotype , Phytosterols/analysis , Phytosterols/pharmacology , Plant Oils/chemistry , Seeds/chemistry
13.
Med Image Anal ; 77: 102344, 2022 04.
Article in English | MEDLINE | ID: mdl-35091278

ABSTRACT

In clinical practice MR images are often first seen by radiologists long after the scan. If image quality is inadequate either patients have to return for an additional scan, or a suboptimal interpretation is rendered. An automatic image quality assessment (IQA) would enable real-time remediation. Existing IQA works for MRI give only a general quality score, agnostic to the cause of and solution to low-quality scans. Furthermore, radiologists' image quality requirements vary with the scan type and diagnostic task. Therefore, the same score may have different implications for different scans. We propose a framework with multi-task CNN model trained with calibrated labels and inferenced with image rulers. Labels calibrated by human inputs follow a well-defined and efficient labeling task. Image rulers address varying quality standards and provide a concrete way of interpreting raw scores from the CNN. The model supports assessments of two of the most common artifacts in MRI: noise and motion. It achieves accuracies of around 90%, 6% better than the best previous method examined, and 3% better than human experts on noise assessment. Our experiments show that label calibration, image rulers, and multi-task training improve the model's performance and generalizability.


Subject(s)
Artifacts , Image Processing, Computer-Assisted , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Motion
14.
Front Neurol ; 12: 731300, 2021.
Article in English | MEDLINE | ID: mdl-34721264

ABSTRACT

Background and Purpose: The objective of this study was to identify prognostic factors of endovascular treatment in patients with acute basilar artery occlusion and add evidence about the efficacy and safety of endovascular treatment for acute basilar artery occlusion. Materials and Methods: We reviewed the data of 101 patients with acute basilar artery occlusion receiving endovascular treatment from January 2013 to September 2019. Baseline characteristics and outcomes were evaluated. A favourable functional outcome was defined as a mRS of 0 to 2 assessed at the 3 month follow-up. The association of clinical and procedural characteristics with the functional outcome and mortality was assessed. Results: The study population consisted of 101 patients: 83 males and 18 females. Successful recanalization was achieved in 99 patients (97.1%). A favourable clinical outcome was observed in 50 patients (49.5%), and the overall mortality rate was 26.7%. A favourable outcome was significantly associated with NIHSS score at admission and lung infection. Mortality was associated with NIHSS score at admission, the number of thrombectomy device passes, the postoperative pons-midbrain index, and diabetes mellitus. Conclusions: This study suggested that NIHSS score at admission, the number of thrombectomy device passes, the postoperative pons-midbrain index, diabetes mellitus, and lung infection can predict the functional outcome and mortality. These initial results add evidence about the efficacy and safety of endovascular treatment for acute basilar artery occlusion and need to be confirmed by further prospective studies.

15.
J Magn Reson ; 327: 106977, 2021 06.
Article in English | MEDLINE | ID: mdl-33873091

ABSTRACT

PURPOSE: Additional spoiler gradients are required in 3D UTE sequences with random view ordering to suppress magnetization refocusing. By leveraging the encoding gradient induced spoiling effect, the spoiler gradients could potentially be reduced or removed to shorten the TR and increase encoding efficiency. An analysis framework is built that models the gradient spoiling effects and a new ordering scheme is proposed for fast 3D UTE acquisition. THEORY AND METHODS: UTE signal evolution and spatial encoding gradient induced spoiling effect are derived from the Bloch equations. And the concept is validated in 2D radial UTE simulation. Then an optimized ordering scheme, named reordered 2D golden angle (r2DGA) scheme, for 3D UTE acquisition is proposed. The r2DGA scheme is compared to the sequential and 3D golden angle schemes in both phantom and volunteer studies. RESULTS: The proposed r2DGA ordering scheme was applied to two applications, single breath-holding and free breathing 3D lung MRI. With r2DGA ordering scheme, breath-holding lung MRI scan increased 60% scan efficiency by removing the spoiler gradients and the free breathing scan reduced 20% scan time compared to the 3D golden angle scheme by reducing the spoiler gradients. CONCLUSIONS: The proposed r2DGA ordering scheme UTE acquisition reduces the need of spoiler gradients and increases the encoding efficiency, and shows improvements in both breath-holding and free breathing lung MRI applications.


Subject(s)
Magnetic Resonance Imaging , Respiration , Computer Simulation , Humans , Imaging, Three-Dimensional , Lung/diagnostic imaging , Phantoms, Imaging
17.
Magn Reson Med ; 84(6): 2943-2952, 2020 12.
Article in English | MEDLINE | ID: mdl-32697867

ABSTRACT

PURPOSE: To ameliorate tradeoffs between a fixed spatial resolution and signal-to-noise ratio (SNR) for hyperpolarized 13 C MRI. METHODS: In MRI, SNR is proportional to voxel volume but retrospective downsampling or voxel averaging only improves SNR by the square root of voxel size. This can be exploited with a metabolite-selective imaging approach that independently encodes each compound, yielding high-resolution images for the injected substrate and coarser resolution images for downstream metabolites, while maintaining adequate SNR for each. To assess the efficacy of this approach, hyperpolarized [1-13 C]pyruvate data were acquired in healthy Sprague-Dawley rats (n = 4) and in two healthy human subjects. RESULTS: Compared with a constant resolution acquisition, variable-resolution data sets showed improved detectability of metabolites in pre-clinical renal studies with a 3.5-fold, 8.7-fold, and 6.0-fold increase in SNR for lactate, alanine, and bicarbonate data, respectively. Variable-resolution data sets from healthy human subjects showed cardiac structure and neuro-vasculature in the higher resolution pyruvate images (6.0 × 6.0 mm2 for cardiac and 7.5 × 7.5 mm2 for brain) that would otherwise be missed due to partial-volume effects and illustrates the level of detail that can be achieved with hyperpolarized substrates in a clinical setting. CONCLUSION: We developed a variable-resolution strategy for hyperpolarized 13 C MRI using metabolite-selective imaging and demonstrated that it mitigates tradeoffs between a fixed spatial resolution and SNR for hyperpolarized substrates, providing both high resolution pyruvate and coarse resolution metabolite data sets in a single exam. This technique shows promise to improve future studies by maximizing metabolite SNR while minimizing partial-volume effects from the injected substrate.


Subject(s)
Magnetic Resonance Imaging , Pyruvic Acid , Animals , Carbon Isotopes , Rats , Rats, Sprague-Dawley , Retrospective Studies , Signal-To-Noise Ratio
18.
Magn Reson Med ; 84(4): 1763-1780, 2020 10.
Article in English | MEDLINE | ID: mdl-32270547

ABSTRACT

PURPOSE: To develop a framework to reconstruct large-scale volumetric dynamic MRI from rapid continuous and non-gated acquisitions, with applications to pulmonary and dynamic contrast-enhanced (DCE) imaging. THEORY AND METHODS: The problem considered here requires recovering 100 gigabytes of dynamic volumetric image data from a few gigabytes of k-space data, acquired continuously over several minutes. This reconstruction is vastly under-determined, heavily stressing computing resources as well as memory management and storage. To overcome these challenges, we leverage intrinsic three-dimensional (3D) trajectories, such as 3D radial and 3D cones, with ordering that incoherently cover time and k-space over the entire acquisition. We then propose two innovations: (a) A compressed representation using multiscale low-rank matrix factorization that constrains the reconstruction problem, and reduces its memory footprint. (b) Stochastic optimization to reduce computation, improve memory locality, and minimize communications between threads and processors. We demonstrate the feasibility of the proposed method on DCE imaging acquired with a golden-angle ordered 3D cones trajectory and pulmonary imaging acquired with a bit-reversed ordered 3D radial trajectory. We compare it with "soft-gated" dynamic reconstruction for DCE and respiratory-resolved reconstruction for pulmonary imaging. RESULTS: The proposed technique shows transient dynamics that are not seen in gating-based methods. When applied to datasets with irregular, or non-repetitive motions, the proposed method displays sharper image features. CONCLUSIONS: We demonstrated a method that can reconstruct massive 3D dynamic image series in the extreme undersampling and extreme computation setting.


Subject(s)
Contrast Media , Image Interpretation, Computer-Assisted , Algorithms , Image Enhancement , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Lung/diagnostic imaging , Magnetic Resonance Imaging
19.
Magn Reson Med ; 83(4): 1208-1221, 2020 04.
Article in English | MEDLINE | ID: mdl-31565817

ABSTRACT

PURPOSE: To develop a high-scanning efficiency, motion-corrected imaging strategy for free-breathing pulmonary MRI by combining an iterative motion-compensation reconstruction with a ultrashort echo time (UTE) acquisition called iMoCo UTE. METHODS: An optimized golden-angle ordering radial UTE sequence was used to continuously acquire data for 5 minutes. All readouts were grouped to different respiratory motion states based on self-navigator signals, and then motion-resolved data was reconstructed by XD golden-angle radial sparse parallel reconstruction. One state from the motion-resolved images was selected as a reference, and then motion fields from the other states to the reference were derived via nonrigid registration. Finally, all motion-resolved data and motion fields were reconstructed by using an iterative motion-compensation (MoCo) reconstruction with a total generalized variation sparse constraint. RESULTS: The iMoCo UTE strategy was evaluated in volunteers and nonsedated pediatric patient (4-6 years old) studies. Images reconstructed with iMoCo UTE provided sharper anatomical lung structures and higher apparent SNR and contrast-to-noise ratio compared to using other motion-correction strategies, such as soft-gating, motion-resolved reconstruction, and nonrigid MoCo. iMoCo UTE also showed promising results in an infant study. CONCLUSION: The proposed iMoCo UTE combines self-navigation, motion modeling, and a compressed sensing reconstruction to increase scan efficiency and SNR and to reduce respiratory motion in lung MRI. This proposed strategy shows improvements in free-breathing lung MRI scans, especially in very challenging application situations such as pediatric MRI studies.


Subject(s)
Artifacts , Imaging, Three-Dimensional , Child , Child, Preschool , Humans , Lung/diagnostic imaging , Magnetic Resonance Imaging , Respiration
20.
J Magn Reson ; 301: 73-79, 2019 04.
Article in English | MEDLINE | ID: mdl-30851668

ABSTRACT

Effective coil combination methods for human hyperpolarized 13C spectroscopy multi-channel data had been relatively unexplored. This study implemented and tested several coil combination methods, including (1) the sum-of-squares (SOS), (2) singular value decomposition (SVD), (3) Roemer method by using reference peak area as a sensitivity map (RefPeak), and (4) Roemer method by using ESPIRiT-derived sensitivity map (ESPIRiT). These methods were evaluated by numerical simulation, thermal phantom experiments, and human cancer patient studies. Overall, the SVD, RefPeak, and ESPIRiT methods demonstrated better accuracy and robustness than the SOS method. Extracting complex pyruvate signal provides an easy and excellent approximation of the coil sensitivity map while maintaining valuable phase information of the coil-combined data.


Subject(s)
Molecular Imaging/methods , Algorithms , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/surgery , Carbon Isotopes , Computer Simulation , Electromagnetic Fields , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Neoplasms/diagnostic imaging , Phantoms, Imaging , Pyruvic Acid/chemistry , Reproducibility of Results , Signal-To-Noise Ratio
SELECTION OF CITATIONS
SEARCH DETAIL
...