Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 14(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38727396

ABSTRACT

A series of quaternary ammonium or phosphonium salts were applied as zeolite growth modifiers in the synthesis of hierarchical ZSM-5 zeolite. The results showed that the use of methyltriphenylphosphonium bromide (MTBBP) could yield nano-sized hierarchical ZSM-5 zeolite with a "rice crust" morphology feature, which demonstrates a better catalytic performance than other disinfect candidates. It was confirmed that the addition of MTBBP did not cause discernable adverse effects on the microstructures or acidities of ZSM-5, but it led to the creation of abundant meso- to marco- pores as a result of aligned tiny particle aggregations. Moreover, the generation of the special morphology was believed to be a result of the coordination and competition between MTBBP and Na+ cations. The as-synthesized hierarchical zeolite was loaded with Zn and utilized in the propane aromatization reaction, which displayed a prolonged lifetime (1430 min vs. 290 min compared with conventional ZSM-5) and an enhanced total turnover number that is four folds of the traditional one, owing to the attenuated hydride transfer reaction and slow coking rate. This work provides a new method to alter the morphological properties of zeolites with low-cost disinfectants, which is of great potential for industrial applications.

2.
Rep Prog Phys ; 87(6)2024 May 20.
Article in English | MEDLINE | ID: mdl-38701769

ABSTRACT

Infrared (IR) neuromodulation (INM) is an emerging light-based neuromodulation approach that can reversibly control neuronal and muscular activities through the transient and localized deposition of pulsed IR light without requiring any chemical or genetic pre-treatment of the target cells. Though the efficacy and short-term safety of INM have been widely demonstrated in both peripheral and central nervous systems, the investigations of the detailed cellular and biological processes and the underlying biophysical mechanisms are still ongoing. In this review, we discuss the current research progress in the INM field with a focus on the more recently discovered IR nerve inhibition. Major biophysical mechanisms associated with IR nerve stimulation are summarized. As the INM effects are primarily attributed to the spatiotemporal thermal transients induced by water and tissue absorption of pulsed IR light, temperature monitoring techniques and simulation models adopted in INM studies are discussed. Potential translational applications, current limitations, and challenges of the field are elucidated to provide guidance for future INM research and advancement.


Subject(s)
Infrared Rays , Animals , Humans
3.
Plants (Basel) ; 12(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37836129

ABSTRACT

Ginger (Zingiber officinale Roscoe), a widely consumed edible and medicinal plant, possesses significant nutritional and economic value. Abiotic stresses such as drought and low temperatures can impact the growth and development of ginger. The plant-specific transcription factor Teosinte branched1/cycloidea/proliferating cell factor (TCP) has progressively been identified in various plants for its role in regulating plant growth and development as well as conferring resistance to abiotic stresses. However, limited information on the TCP family is available in ginger. In this study, we identified 20 TCP members in the ginger genome, which were randomly distributed across 9 chromosomes. Based on phylogenetic analysis, these ginger TCP were classified into two subfamilies: Class I (PCF) and Class II (CIN, CYC/TB). The classification of the identified ginger TCPs was supported by a multi-species phylogenetic tree and motif structure analysis, suggesting that the amplification of the ginger TCP gene family occurred prior to the differentiation of angiosperms. The promoter region of ginger TCP genes was found to contain numerous cis-acting elements associated with plant growth, development, and abiotic stress response. Among these elements, the stress response element, anaerobic induction, and MYB binding site play a dominant role in drought responsiveness. Additionally, expression pattern analysis revealed variations in the expression of ginger TCP gene among different tissues and in response to diverse abiotic stresses (drought, low temperature, heat, and salt). Our research offers a thorough examination of TCP members within the ginger plant. This analysis greatly contributes to the understanding of how TCP genes regulate tissue development and response to stress, opening up new avenues for further exploration in this field.

4.
Anal Chem ; 95(45): 16514-16521, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37880191

ABSTRACT

Few experimental tools exist for performing label-free imaging of biological samples in a water-rich environment due to the high infrared absorption of water, overlapping with major protein and lipid bands. A novel imaging modality based on time-resolved mid-infrared photothermal microscopy is introduced and applied to imaging axon bundles in a saline bath environment. Photothermally induced spatial gradients at the axon bundle membrane interfaces with saline and surrounding biological tissue are observed and temporally characterized by a high-speed boxcar detection system. Localized time profiles with an enhanced signal-to-noise, hyper-temporal image stacks, and two-dimensional mapping of the time decay profiles are acquired without the need for complex post image processing. Axon bundles are found to have a larger distribution of time decay profiles compared to the water background, allowing background differentiation based on these transient dynamics. The quantitative analysis of the signal evolution over time allows characterizing the level of thermal confinement at different regions. When axon bundles are surrounded by complex heterogeneous tissue, which contains smaller features, a stronger thermal confinement is observed compared to a water environment, thus shedding light on the heat transfer dynamics across aqueous biological interfaces.


Subject(s)
Microscopy , Water , Microscopy/methods , Axons , Image Processing, Computer-Assisted , Proteins
5.
BMC Genomics ; 24(1): 490, 2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37633894

ABSTRACT

BACKGROUND: As the characteristic functional component in ginger, gingerols possess several health-promoting properties. Long non-coding RNAs (lncRNAs) act as crucial regulators of diverse biological processes. However, lncRNAs in ginger are not yet identified so far, and their potential roles in gingerol biosynthesis are still unknown. In this study, metabolomic and transcriptomic analyses were performed in three main ginger cultivars (leshanhuangjiang, tonglingbaijiang, and yujiang 1 hao) in China to understand the potential roles of the specific lncRNAs in gingerol accumulation. RESULTS: A total of 744 metabolites were monitored by metabolomics analysis, which were divided into eleven categories. Among them, the largest group phenolic acid category contained 143 metabolites, including 21 gingerol derivatives. Of which, three gingerol analogs, [8]-shogaol, [10]-gingerol, and [12]-shogaol, accumulated significantly. Moreover, 16,346 lncRNAs, including 2,513, 1,225, and 2,884 differentially expressed (DE) lncRNA genes (DELs), were identified in all three comparisons by transcriptomic analysis. Gene ontology enrichment (GO) analysis showed that the DELs mainly enriched in the secondary metabolite biosynthetic process, response to plant hormones, and phenol-containing compound metabolic process. Correlation analysis revealed that the expression levels of 11 DE gingerol biosynthesis enzyme genes (GBEGs) and 190 transcription factor genes (TF genes), such as MYB1, ERF100, WRKY40, etc. were strongly correlation coefficient with the contents of the three gingerol analogs. Furthermore, 7 and 111 upstream cis-acting lncRNAs, 1,200 and 2,225 upstream trans-acting lncRNAs corresponding to the GBEGs and TF genes were identified, respectively. Interestingly, 1,184 DELs might function as common upstream regulators to these GBEGs and TFs genes, such as LNC_008452, LNC_006109, LNC_004340, etc. Furthermore, protein-protein interaction networks (PPI) analysis indicated that three TF proteins, MYB4, MYB43, and WRKY70 might interact with four GBEG proteins (PAL1, PAL2, PAL3, and 4CL-4). CONCLUSION: Based on these findings, we for the first time worldwide proposed a putative regulatory cascade of lncRNAs, TFs genes, and GBEGs involved in controlling of gingerol biosynthesis. These results not only provide novel insights into the lncRNAs involved in gingerol metabolism, but also lay a foundation for future in-depth studies of the related molecular mechanism.


Subject(s)
RNA, Long Noncoding , Zingiber officinale , RNA, Long Noncoding/genetics , Transcriptome , Metabolomics , Zingiber officinale/genetics
6.
Cell Mol Biol (Noisy-le-grand) ; 69(15): 58-62, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38279494

ABSTRACT

This study was conducted to explore cinobufotalin's effects and related mechanisms on serum MMP-2, MMP-9, Beclin1, and LC3-II in advanced non-small-cell lung cancer (NSCLC) patients. For this purpose, 150 patients with advanced NSCLC in our hospital from Jan. 2020 to Feb. 2022 were chosen as participants in the research study. Using a random number table method, the 150 patients were divided evenly into two groups - a control group (C) and an observation group (O). Group C received conventional NP regimen chemotherapy, while Group O received cinobufotalin capsules based on the control group. The follow-up was conducted for 4 months, and the differences in serum MMP-2, MMP-9, Beclin1, LC3-II and chemotherapy resistance rates were compared. Results showed that There was no statistically significant difference in MMP-2, MMP-9, Beclin1, and LC3-II levels between the two before treatment (P>0.05); 4 months later, Group O's MMP-2, MMP-9, Beclin1, and LC3-II levels were lower than those before treatment and Group C during the same period, with a statistically significant difference (P<0.05); At 4 months after treatment, the clinical efficacy of Group O was better and its ORR was higher, with a statistically significant difference (P<0.05); Using Pearson correlation analysis, a weak positive correlation was identified between MMP-2, Beclin1, LC3-II, and chemotherapy resistance (r=0.167, 0.197, 0.273, P<0.05), a positive correlation between MMP-2 and MMP-9, Beclin1, LC3-II (r=0.592, 0.852, 0.665, P<0.01), a positive correlation between MMP-9 and Beclin1, LC3-II (r=0.552, 0.472, P<0.01), and a positive correlation between Beclin1 and LC3-II (r=0.647, P<0.01). It was concluded that cinobufotalin has an inhibitory effect on the serum MMP-2, MMP-9, Beclin1, and LC3-II levels in advanced NSCLC patients, which can promote clinical efficacy improvement and reduce the risk of chemotherapy resistance by downregulating MMP-2, Beclin1, and LC3-II levels.


Subject(s)
Bufanolides , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Beclin-1 , Carcinoma, Non-Small-Cell Lung/drug therapy , Matrix Metalloproteinase 9 , Matrix Metalloproteinase 2 , Lung Neoplasms/drug therapy , Autophagy
7.
Math Biosci Eng ; 19(11): 11137-11153, 2022 08 03.
Article in English | MEDLINE | ID: mdl-36124584

ABSTRACT

The traditional manual breast cancer diagnosis method of pathological images is time-consuming and labor-intensive, and it is easy to be misdiagnosed. Computer-aided diagnosis of WSIs gradually comes into people*s sight. However, the complexity of high-resolution breast cancer pathological images poses a great challenge to automatic diagnosis, and the existing algorithms are often difficult to balance the accuracy and efficiency. In order to solve these problems, this paper proposes an automatic image segmentation method based on dual-path feature extraction network for breast pathological WSIs, which has a good segmentation accuracy. Specifically, inspired by the concept of receptive fields in the human visual system, dilated convolutional networks are introduced to encode rich contextual information. Based on the channel attention mechanism, a feature attention module and a feature fusion module are proposed to effectively filter and combine the features. In addition, this method uses a light-weight backbone network and performs pre-processing on the data, which greatly reduces the computational complexity of the algorithm. Compared with the classic models, it has improved accuracy and efficiency and is highly competitive.


Subject(s)
Breast Neoplasms , Neural Networks, Computer , Algorithms , Breast , Breast Neoplasms/diagnostic imaging , Diagnosis, Computer-Assisted/methods , Female , Humans
8.
Sci Rep ; 12(1): 14196, 2022 08 20.
Article in English | MEDLINE | ID: mdl-35987765

ABSTRACT

Infrared (IR) neuromodulation (INM) has been demonstrated as a novel modulation modality of neuronal excitability. However, the effects of pulsed IR light on synaptic transmission have not been investigated systematically. In this report, the IR light (2 µm) is used to directly modulate evoked synaptic transmission at the crayfish opener neuromuscular junction. The extracellularly recorded terminal action potentials (tAPs) and evoked excitatory postsynaptic currents (EPSCs) modulated by localized IR light illumination (500 ms, 3-13 mW) aimed at the synapses are analyzed. The impact of a single IR light pulse on the presynaptic Ca2+ influx is monitored with Ca2+ indicators. The EPSC amplitude is enhanced, and its rising phase is accelerated under relatively low IR light power levels and localized temperature rises. Increasing the IR light power reversibly suppresses and eventually blocks the EPSCs. Meanwhile, the synaptic delay, tAP amplitude, and presynaptic Ca2+ influx decrease monotonously with higher IR light power. It is demonstrated for the first time that IR light illumination has bidirectional effects on evoked synaptic transmission. These results highlight the efficacy and flexibility of using pulsed IR light to directly control synaptic transmission and advance our understanding of INM of neural networks.


Subject(s)
Synapses , Synaptic Transmission , Action Potentials/physiology , Excitatory Postsynaptic Potentials/physiology , Neuromuscular Junction , Synapses/physiology , Synaptic Transmission/physiology
9.
Biomed Opt Express ; 13(1): 374-388, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-35154878

ABSTRACT

The excitatory and inhibitory effects of single and brief infrared (IR) light pulses (2 µm) with millisecond durations and various power levels are investigated with a custom-built fiber amplification system. Intracellular recordings from motor axons of the crayfish opener neuromuscular junction are performed ex vivo. Single IR light pulses induce a membrane depolarization during the light pulses, which is followed by a hyperpolarization that can last up to 100 ms. The depolarization amplitude is dependent on the optical pulse duration, total energy deposition and membrane potential, but is insensitive to tetrodotoxin. The hyperpolarization reverses its polarity near the potassium equilibrium potential and is barium-sensitive. The membrane depolarization activates an action potential (AP) when the axon is near firing threshold, while the hyperpolarization reversibly inhibits rhythmically firing APs. In summary, we demonstrate for the first time that single and brief IR light pulses can evoke initial depolarization followed by hyperpolarization on individual motor axons. The corresponding mechanisms and functional outcomes of the dual effects are investigated.

10.
Neurophotonics ; 7(4): 045003, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33094124

ABSTRACT

Significance: Systematic studies of the physiological outputs induced by infrared (IR)-mediated inhibition of motor nerves can provide guidance for therapeutic applications and offer critical insights into IR light modulation of complex neural networks. Aim: We explore the IR-mediated inhibition of action potentials (APs) that either propagate along single axons or are initiated locally and their downstream synaptic transmission responses. Approach: APs were evoked locally by two-electrode current clamp or at a distance for propagating APs. The neuromuscular transmission was recorded with intracellular electrodes in muscle cells or macro-patch pipettes on terminal bouton clusters. Results: IR light pulses completely and reversibly terminate the locally initiated APs firing at low frequencies, which leads to blocking of the synaptic transmission. However, IR light pulses only suppress but do not block the amplitude and duration of propagating APs nor locally initiated APs firing at high frequencies. Such suppressed APs do not influence the postsynaptic responses at a distance. While the suppression of AP amplitude and duration is similar for propagating and locally evoked APs, only the former exhibits a 7% to 21% increase in the maximum time derivative of the AP rising phase. Conclusions: The suppressed APs of motor axons can resume their waveforms after passing the localized IR light illumination site, leaving the muscular and synaptic responses unchanged. IR-mediated modulation on propagating and locally evoked APs should be considered as two separate models for axonal and somatic modulations.

11.
Biomed Opt Express ; 10(12): 6580-6594, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31853418

ABSTRACT

The infrared (IR) inhibition of axonal activities in the crayfish neuromuscular preparation is studied using 2 µm IR light pulses with varying durations. The intracellular neuronal activities are monitored with two-electrode current clamp, while the IR-induced temperature changes are measured by the open patch technique simultaneously. It is demonstrated that the IR pulses can reversibly shape or block locally initiated action potentials. Suppression of the AP amplitude and duration and decrease in axonal excitability by IR pulses are quantitatively analyzed. While the AP amplitude and duration decrease similarly during IR illumination, it is discovered that the recovery of the AP duration after the IR pulses is slower than that of the AP amplitude. An IR-induced decrease in the input resistance (8.8%) is detected and discussed together with the temperature dependent changes in channel kinetics as contributing factors for the inhibition reported here.

12.
Soft Matter ; 15(37): 7381-7389, 2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31513229

ABSTRACT

Two block copolymers containing two amino-acid derivatives, PEO-b-PLAA and PEO-b-PAAC, were fabricated through atom transfer radical polymerization (ATRP) or reversible addition-fragmentation chain transfer polymerization (RAFT). Then, they were employed as a macro-crosslinker to prepare high-performance poly(acrylic acid) (PAA) hydrogels named "PxAy" or "TyAz". There were numerous synergistic noncovalent interactions with hydrogen bonds between the macro-crosslinker and PAA chains, as well as entanglement of polymer chains. Hence, the hydrogels exhibited desirable mechanical properties and self-healing abilities. For PxAy hydrogels, the maximum fracture elongation and fracture strength were 9800% and 120.01 kPa, respectively. Moreover, the enhanced physical interaction enabled the hydrogels to have rapid self-healing abilities without stimulation. The hydrogels showed >80% self-healing efficiency and exhibited ∼10-3 S cm-1 electrical conductivity upon the introduction of KCl. Meanwhile, benefitting from doubling the number of carboxyl groups in the macro-crosslinker of the TyAz hydrogels compared with the PxAy hydrogels, the mechanical properties of TyAz hydrogels could be promoted further and notch-insensitivity could be observed. Tough, adhesive, self-healable, and conductive PAA hydrogels with different structures of amino-acid derivatives could aid the development of macro-crosslinkers.


Subject(s)
Acrylic Resins/chemistry , Aspartic Acid/analogs & derivatives , Hydrogels/chemical synthesis , Leucine/analogs & derivatives , Polyethylene Glycols/chemistry
13.
Huan Jing Ke Xue ; 40(2): 738-746, 2019 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-30628338

ABSTRACT

Polyvinylidene fluoride (PVDF) hollow fiber ultrafiltration membranes were modified with carbon nanotubes (CNT). Hybrid pre-ozonation and CNT modification were investigated by experimentally manipulating the ozonation process, threshold flux, and membrane fouling. The results showed that the threshold fluxes of the unmodified membrane and hybrid process were 45 L·(m2·h)-1 and 81 L·(m2·h)-1, respectively. Additionally, the fouling rate of the hybrid process was about 0.00137 kPa·min-1·L-1·m2·h, which was notably lower compared to other process. The results showed that the filtration volume under threshold flux was higher than that under critical flux with the same CNT loading mass and ozone dosage. This comparison indicated that membrane fouling was alleviated under threshold flux and that the corresponding operation period was extended. Through the carbon balance experiment, the fouling capacity and recoverability improved remarkably after CNT modification. Additionally, ozonation could enhance the recoverability of membranes. The hybrid process examined in this study could dramatically improve the permeability and extend the operation time of the ultrafiltration membrane.

14.
Huan Jing Ke Xue ; 39(8): 3744-3752, 2018 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-29998682

ABSTRACT

Polyvinylidene fluoride (PVDF) hollow fiber ultrafiltration membranes were modified with carbon nanotube (CNT). Combined with the ozonation process, the effect of the hybrid pre-ozonation and CNT modification on fouling alleviation was investigated. The impacts of CNT loading mass and ozone dosage on the variation of flux and antifouling ability of the membrane modules were evaluated. Under a critical flux of 144 L·(m2·h)-1, CNT loading mass of 3 g·m-2, and ozone dosage(O3/DOC) of 0.22 mg·mg-1, the results revealed that the filtration volume of the hybrid process was promoted to 850 L·m-2, which was about 4.5 times higher than that of the original unmodified membrane. With a flux of 18 L·(m2·h)-1 and 15 day operation, the filtration volume was promoted to 3000 L·m-2, which was 10 times that of the unmodified membrane. The fouling membrane surface was observed using confocal laser scanning electron microscopy (CLSM). The results demonstrated that more living bacteria were present on the membrane surface of the unmodified membrane, which showed a rapid transmembrane pressure (TMP) increase. Both pre-ozonation and CNT modification decreased the total amount of microorganisms and the amount of the living bacteria as well, which mitigated the increase in TMP. After pre-ozonation, the presence of a CNT layer on the membrane surface further decreased the number of living bacteria. Although the CNT layer captured some dead bacteria, it had no obvious relationship with the increase in TMP.


Subject(s)
Bacteria/growth & development , Biofouling , Nanotubes, Carbon , Ultrafiltration , Water Purification , Membranes, Artificial , Ozone
15.
Chemistry ; 23(55): 13696-13703, 2017 Oct 04.
Article in English | MEDLINE | ID: mdl-28707806

ABSTRACT

Dye-containing wastewater has caused serious environmental pollution. Herein, rationally designed spherical polyelectrolyte brushes (SPBs) with cationic charges, polystyrene-poly(2-aminoethylmethacrylate hydrochloride) (PS-PAEMH) as the absorbent, and compressed carbon dioxide as the antisolvent are proposed for the separation of the anionic dye eosin Y (EY) from a solution of mixed dyes. The adsorption behavior of EY onto PS-PAEMH was highly dependent on CO2 pressure, contact time, and initial concentration. The maximum adsorption capacity of PS-PAEMH was 335.20 mg g-1 . FTIR and UV/Vis measurements proved that the electrostatic interactions between EY and PS-PAEMH played an important role in the absorbance process. The adsorption process fitted the pseudo-second-order kinetic model and Freundlich isotherm model very well. The combined dye and polymer brush could be easily separated through ion exchange by adding an aqueous solution of NaCl. Recovered PS-PAEMH retained a high adsorption capacity even after ten cycles of regeneration. This method provides a simple and effective way to separate ionic materials for environmental engineering.

16.
Bioresour Technol ; 240: 165-170, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28366690

ABSTRACT

Municipal solid wastes incineration (MSWI) flue gas was employed as the carbon source for in-situ calcium removal from MSWI leachate. Calcium removal efficiency was 95-97% with pH of 10.0-11.0 over 100min of flue gas aeration, with both bound Ca and free Ca being removed effectively. The fluorescence intensity of tryptophan, protein-like and humic acid-like compounds increased after carbonation process. The decrease of bound Ca with the increase of precipitate indicated that calcium was mainly converted to calcium carbonate precipitate. It suggested that the interaction between dissolved organic matter and Ca2+ was weakened. Moreover, 10-16% of chemical oxygen demand removal and the decrease of ultraviolet absorption at 254nm indicated that some organics, especially aromatic compound decreased via adsorption onto the surface of calcium carbonate. The results indicate that introduce of waste incineration flue gas could be a feasible way for calcium removal from leachate.


Subject(s)
Carbonates , Incineration , Refuse Disposal , Calcium , Carbon , Solid Waste
17.
Chem Sci ; 7(3): 1926-1932, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-29899917

ABSTRACT

Self-assembling inorganic nanoparticles (NPs) into macroscopic three dimensional (3D) architectures often requires the assistance of organic components, leaving residual organics in the resultant. In this work, organic-free MnO2 aerogels with ultralow density have been achieved by the self-assembly of two dimensional (2D) MnO2 nanosheets via an ice-templating approach. To the authors' best knowledge, it is the first reported case of constructing a high-purity inorganic aerogel from preformed NPs without using any functionalization or stabilization agents. Moreover, it has been demonstrated that an ultralight MnO2 aerogel with a density as low as ∼0.53 mg cm-3, which is the lightest metal oxide aerogel to date, can be well obtained by such an approach. The successful formation of the aerogel can be attributed to the enhanced van der Waals force between the 2D building blocks that have been more orderly arranged by the squeezing of ice crystals during the freezing process. Hence, this work shows a pioneering example of assembling inorganic NPs into aerogels relying only on the weak interactions between NPs (e.g. van der Waals forces). It has also been demonstrated that the obtained MnO2 aerogel can function as an effective absorbent for toxic reducing gas, owing to its strong oxidation ability and high porosity. The strategy presented herein holds good potential to be applied to the fabrication of other high-purity inorganic aerogels, especially those with 2D building blocks readily available.

18.
J Colloid Interface Sci ; 462: 9-18, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26433085

ABSTRACT

As an important semiconductor metal oxide, various methods have been developed for preparation of ZnO architectures owing to their excellent properties and extensive applications. In this paper, two kinds of 3D flower-like ZnO architectures assembled with numerous nanosheets were successfully synthesized by a simple hydrothermal route assisted by sodium dodecyl sulfate (SDS), origining from the different alkali environment created by urea and hexamine (HMT). SEM and TEM results revealed that the two products had hydrangea-like and rose-like nanostructures with uniform particle sizes, respectively. XRD results confirmed that the growth process of ZnO involved a phase transformation from intermediate compound basic zinc carbonate to ZnO. Base on the experimental results, the formation mechanisms of two kinds of flower-like ZnO undergoing nucleation, oriented growth and self-assembly processes were discussed. The photocatalytic results indicated that both samples exhibited high photocatalytic activities and good cycling stability for the degradation of rhodamine B (RhB), which was almost completely degraded within 25min, in comparison to those milled samples (above 45min). The excellent performances were mainly ascribed to their unique nanostructure, good stability, and uniform particle size.

SELECTION OF CITATIONS
SEARCH DETAIL
...