Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 466
Filter
1.
Front Immunol ; 15: 1415573, 2024.
Article in English | MEDLINE | ID: mdl-38835772

ABSTRACT

Efferocytosis, the process of engulfing and removing apoptotic cells, plays an essential role in preserving tissue health and averting undue inflammation. While macrophages are primarily known for this task, dendritic cells (DCs) also play a significant role. This review delves into the unique contributions of various DC subsets to efferocytosis, highlighting the distinctions in how DCs and macrophages recognize and handle apoptotic cells. It further explores how efferocytosis influences DC maturation, thereby affecting immune tolerance. This underscores the pivotal role of DCs in orchestrating immune responses and sustaining immune equilibrium, providing new insights into their function in immune regulation.


Subject(s)
Dendritic Cells , Macrophages , Phagocytosis , Dendritic Cells/immunology , Humans , Phagocytosis/immunology , Animals , Macrophages/immunology , Apoptosis/immunology , Immune Tolerance , Efferocytosis
2.
Phys Chem Chem Phys ; 26(23): 16514-16520, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38832437

ABSTRACT

The interfacial correlation factor f(m,x), where m refers to the interaction among ice, water and the substrate and x refers to the ratio of the critical nucleation size to the surface topography characteristic size of the substrate, plays a crucial role in the classical theory of heterogeneous ice nucleation as it significantly impacts the energy of nucleation. Generally, a smaller value of f(m,x) indicates a higher propensity for ice nucleation. The degree of structural compatibility between ice and the substrate greatly influences f(m,x), particularly on specific substrates. Several approaches have been proposed to calculate the lattice matching based on this idea, which allows whether a surface is favorable for nucleation to be determined. However, none of these methods adequately correlates the mismatch index with ice growth phenomena. In this paper, we embarked on a new attempt to calculate the mismatch index by combining the lattice parameter and Miller index (LPMI). Droplet freezing experiments have been carried out on α-Al2O3 and silicon surfaces with different Miller indices to verify the rationality of the LPMI method. Furthermore, we validated the LPMI method extensively against other works and further demonstrated its readiness, accuracy and universality for freezing problems. The results consistently show that δd = 2|di - ds|/(di + ds) with interplanar spacing more accurately predicts heterogeneous ice nucleation rates across a wide range of substrates than δ1 = (ai - as)/ai with the lattice parameter of ice and the substrate and is more generally applicable than δ2D = (di - di)/di with the distances between two adjacent and congener atoms on the same plane. We believe that the proposed approach will aid in the selection of substrates for promoting or inhibiting heterogeneous nucleation on a specific substrate.

3.
J Econ Entomol ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856713

ABSTRACT

Sitobion miscanthi and Schizaphis graminum (Rondani) are the 2 main aphid species that occur simultaneously, causing significant loss to wheat production. Acetamiprid has been used to control a variety of pests, including aphids. In this study, the sublethal effect of acetamiprid on S. miscanthi and S. graminum was evaluated using life-table analyses. The results showed that acetamiprid has a high toxicity to S. miscanthi and S. graminum with a LC50 of 1.90 and 3.58 mg/L at 24 h, respectively. The adult longevity and fecundity of S. miscanthi and S. graminum F0 generation were significantly reduced after being exposed to a sublethal concentration of acetamiprid. Additionally, the sublethal concentration of acetamiprid had negative transgenerational effects on S. miscanthi and S. graminum, which showed a significant decrease in fecundity and population life-table parameters involving age-stage-specific survival rate (sxj), age-specific survival rate (lx), and intrinsic rate of increase (r). Furthermore, the population projections showed that the total population size of S. miscanthi and S. graminum was significantly lower in the aphid group exposed to sublethal concentration of acetamiprid compared to the control group. These results suggest that sublethal concentration of acetamiprid suppresses the population growth of S. miscanthi and S. graminum. This finding is beneficial to the control of wheat aphids, and is important to fully understand the role of acetamiprid in integrated pest management.

4.
Aging (Albany NY) ; 16(10): 8965-8979, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38787373

ABSTRACT

BACKGROUND: Bone formation and homeostasis are greatly dependent on the osteogenic differentiation of human bone marrow stem cells (BMSCs). Therefore, revealing the mechanisms underlying osteogenic differentiation of BMSCs will provide new candidate therapeutic targets for osteoporosis. METHODS: The osteogenic differentiation of BMSCs was measured by analyzing ALP activity and expression levels of osteogenic markers. Cellular Fe and ROS levels and cell viability were applied to evaluate the ferroptosis of BMSCs. qRT-PCR, Western blotting, and co-immunoprecipitation assays were harnessed to study the molecular mechanism. RESULTS: The mRNA level of CRYAB was decreased in the plasma of osteoporosis patients. Overexpression of CRYAB increased the expression of osteogenic markers including OCN, OPN, RUNX2, and COLI, and also augmented the ALP activity in BMSCs, on the contrary, knockdown of CRYAB had opposite effects. IP-MS technology identified CRYAB-interacted proteins and further found that CRYAB interacted with ferritin heavy chain 1 (FTH1) and maintained the stability of FTH1 via the proteasome mechanism. Mechanically, we unraveled that CRYAB regulated FTH1 protein stability in a lactylation-dependent manner. Knockdown of FTH1 suppressed the osteogenic differentiation of BMSCs, and increased the cellular Fe and ROS levels, and eventually promoted ferroptosis. Rescue experiments revealed that CRYAB suppressed ferroptosis and promoted osteogenic differentiation of BMSCs via regulating FTH1. The mRNA level of FTH1 was decreased in the plasma of osteoporosis patients. CONCLUSIONS: Downregulation of CRYAB boosted FTH1 degradation and increased cellular Fe and ROS levels, and finally improved the ferroptosis and lessened the osteogenic differentiation of BMSCs.


Subject(s)
Cell Differentiation , Ferroptosis , Osteogenesis , Osteoporosis , Humans , Osteogenesis/drug effects , Osteoporosis/metabolism , Osteoporosis/pathology , Mesenchymal Stem Cells/metabolism , alpha-Crystallin B Chain/metabolism , alpha-Crystallin B Chain/genetics , Ferritins/metabolism , Protein Stability , Reactive Oxygen Species/metabolism , Cells, Cultured , Bone Marrow Cells/metabolism , Female , Oxidoreductases
5.
Health Commun ; : 1-12, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778581

ABSTRACT

Health messages aiming to reduce red meat consumption may threaten multiple social identities because people's dietary choices are intertwined with personal, social, and cultural aspects of their lives. Leveraging social identity theory and the concept of social identity complexity, this experiment tested how identity-threatening messages affect people's intention to reduce red meat consumption and how the effect of identity threat may be moderated by messages highlighting the relationships between multiple identities that define a person. Participants (N = 409) read messages that varied identity threat (i.e. the extent to which people feel devalued because of their membership in a social group) and identity complexity (i.e. the extent to which people perceive multiple identities as independent). The study found that identity-threatening messages decreased intentions to reduce red meat consumption when people perceived their dietary identity as overlapping with other identities, but increased the intentions when the dietary identity was seen as independent from other identities. Further, the effects of identity threat and complexity were limited to people with high (vs. low) levels of red meat consumption. We discuss the role of identity complexity in alleviating identity threat and increasing persuasion.

6.
Environ Res ; 256: 119245, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38810821

ABSTRACT

Microalgae have been renowned as the most promising energy organism with significant potential in carbon fixation. In the large-scale cultivation of microalgae, the 3D porous substrate with higher specific surface area is favorable to microalgae adsorption and biofilm formation, whereas difficult for biofilm detachment and microalgae harvesting. To solve this contradiction, N-isopropylacrylamide, a temperature-responsive gels material, was grafted onto the inner surface of the 3D porous substrate to form temperature-controllable interface wettability. The interfacial free energy between microalgae biofilm and the substrates increased from -63.02 mJ/m2 to -31.89 mJ/m2 when temperature was lowered from 32 °C to 17 °C, weakening the adsorption capacity of cells to the surface, and making the biofilm detachment ratio increased to 50.8%. When further cooling the environmental temperature to 4 °C, the detachment capability of microalgae biofilm kept growing. 91.6% of the cells in the biofilm were harvesting from the 3D porous substrate. And the biofilm detached rate was up to 19.84 g/m2/h, realizing the temperature-controlled microalgae biofilm harvesting. But, microalgae growth results in the secretion of extracellular polymeric substances (EPS), which enhanced biofilm adhesion and made cell detachment more difficult. Thus, ultrasonic vibration was used to reinforce biofilm detachment. With the help of ultrasonic vibration, microalgae biofilm detached rate increased by 143.45% to 41.07 g/m2/h. These findings provide a solid foundation for further development of microalgae biofilm detachment and harvesting technology.

7.
Article in English | MEDLINE | ID: mdl-38808513

ABSTRACT

Abstract Background: Photodynamic therapy (PDT) is a minimally invasive therapy that was gradually established as a first-line treatment for vascular abnormalities. Its action depends on the appropriate wavelength of light and photosensitizer to produce toxic oxygen species and cause cell death. Objective: Several new clinical improvements and trends in PDT have been described in recent years. The aim of this review is to provide an overview of the current data from clinical trials. Methods: In this review, we introduce and generalize the wavelength, duration, dose, strength, and photosensitizer of PDT for the treatment of vascular abnormalities, such as circumscribed choroidal hemangiomas (CCH), choroidal neovascularization (CNV) and capillary malformation (CM). Results: The systematic review findings indicate that the application of PDT is a safe effective method to treat CCH, CNV and CM. However, PDT also has early onset side effects and late onset side effects. Conclusions: Based on the discussion of the effectiveness of PDT, we conclude that PDT has great potential for clinical use, although PDT has possible side effects.

8.
Int J Mol Sci ; 25(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38612750

ABSTRACT

AP2/ERF transcription factor family plays an important role in plant development and stress responses. Previous studies have shed light on the evolutionary trajectory of the AP2 and DREB subfamilies. However, knowledge about the evolutionary history of the ERF subfamily in angiosperms still remains limited. In this study, we performed a comprehensive analysis of the ERF subfamily from 107 representative angiosperm species by combining phylogenomic and synteny network approaches. We observed that the expansion of the ERF subfamily was driven not only by whole-genome duplication (WGD) but also by tandem duplication (TD) and transposition duplication events. We also found multiple transposition events in Poaceae, Brassicaceae, Poales, Brassicales, and Commelinids. These events may have had notable impacts on copy number variation and subsequent functional divergence of the ERF subfamily. Moreover, we observed a number of ancient tandem duplications occurred in the ERF subfamily across angiosperms, e.g., in Subgroup IX, IXb originated from ancient tandem duplication events within IXa. These findings together provide novel insights into the evolution of this important transcription factor family.


Subject(s)
Brassicaceae , Magnoliopsida , Magnoliopsida/genetics , DNA Copy Number Variations , Poaceae , Transcription Factors/genetics
9.
Health Commun ; : 1-12, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38446082

ABSTRACT

Americans have increasingly turned to online crowdfunding to pay for healthcare costs, but our understanding of the inequalities in medical crowdfunding remains limited. This study investigates racial disparities in medical crowdfunding outcomes and examines the role of communication in amplifying, altering, or even reducing the disparities. Using data from 1,127 medical crowdfunding campaigns on GoFundMe, the study found that beneficiaries of color received significantly fewer donations than their White counterparts. The differences in donations between racial groups were partly attributable to sharing disparities. Campaigns for beneficiaries of color were shared less via e-mail or social media than campaigns for White beneficiaries. Campaign narratives with more humanizing details about beneficiaries were associated with more donations. However, humanizing details did not predict more shares, nor were they linked to smaller disparities in campaign outcomes between racial groups. Post-hoc analyses showed that more humanizing details were linked to fewer campaign donations for male beneficiaries of color. The findings contribute to the scholarship addressing the intersections of communication and health inequality on digital platforms.

10.
Int Immunopharmacol ; 131: 111812, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38493698

ABSTRACT

BACKGROUND: Lipocalin 13 (LCN13) is a member of the lipocalin family that consists of numerous secretory proteins. LCN13 high-expression has been reported to possess anti-obesity and anti-diabetic effects. Although metabolic dysfunction-associated steatotic liver diseases (MASLD) including metabolic dysfunction-associated steatohepatitis (MASH) are frequently associated with obesity and insulin resistance, the functional role of endogenous LCN13 and the therapeutic effect of LCN13 in MASH and related metabolic deterioration have not been evaluated. METHODS: We employed a methionine-choline deficient diet model and MASH cell models to investigate the role of LCN13 in MASH development. We sought to explore the effects of LCN13 on lipid metabolism and inflammation in hepatocytes under PA/OA exposure using Western blotting, real-time RT-PCR, enzyme-linked immunosorbent assay, hematoxylin and eosin staining, oil red O staining. Using RNA sequencing, chromatin immunoprecipitation assay, and luciferase reporter assays to elucidate whether farnesoid X receptor (FXR) regulates human LCN13 transcription as a transcription factor. RESULTS: Our study found that LCN13 was down-regulated in MASH patients, MASH mouse and cell models. LCN13 overexpression in hepatocyte cells significantly inhibited lipid accumulation and inflammation in vitro. Conversely, LCN13 downregulation significantly exacerbated lipid accumulation and inflammatory responses in vivo and in vitro. Mechanistically, we provided the first evidence that LCN13 was transcriptionally activated by FXR, representing a novel direct target gene of FXR. And the key promoter region of LCN13 binds to FXR was also elucidated. We further revealed that LCN13 overexpression via FXR activation ameliorates hepatocellular lipid accumulation and inflammation in vivo and in vitro. Furthermore, LCN13-down-regulated mice exhibited aggravated MASH phenotypes, including increased hepatic lipid accumulation and inflammation. CONCLUSION: Our findings provide new insight regarding the protective role of LCN13 in MASH development and suggest an innovative therapeutic strategy for treating MASH or related metabolic disorders.


Subject(s)
Carcinoma, Hepatocellular , Fatty Liver , Liver Neoplasms , Animals , Humans , Mice , Carcinoma, Hepatocellular/metabolism , Fatty Liver/metabolism , Inflammation/metabolism , Lipids , Lipocalins/metabolism , Liver , Liver Neoplasms/metabolism , Mice, Inbred C57BL , Obesity/metabolism
11.
Anesth Analg ; 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38446700

ABSTRACT

BACKGROUND: Clinical data demonstrate that chronic use of opioid analgesics increases neuropathic pain in people living with human immunodeficiency virus (HIV). Therefore, it is important to elucidate the molecular mechanisms of HIV-related chronic pain. In this study, we investigated the role of the transcription factor cMyc, epigenetic writer enhancer of zeste homology 2 (EZH2), and sirtuin 3 (Sirt3) pathway in HIV glycoprotein gp120 with morphine (gp120M)-induced neuropathic pain in rats. METHODS: Neuropathic pain was induced by intrathecal administration of recombinant gp120 with morphine. Mechanical withdrawal threshold was measured using von Frey filaments, and thermal latency using the hotplate test. Spinal expression of cMyc, EZH2, and Sirt3 were measured using Western blots. Antinociceptive effects of intrathecal administration of antisense oligodeoxynucleotide against cMyc, a selective inhibitor of EZH2, or recombinant Sirt3 were tested. RESULTS: In the spinal dorsal horn, gp120M upregulated expression of cMyc (ratio of gp120M versus control, 1.68 ± 0.08 vs 1.00 ± 0.14, P = .0132) and EZH2 (ratio of gp120M versus control, 1.76 ± 0.05 vs 1.00 ± 0.16, P = .006), and downregulated Sirt3 (ratio of control versus gp120M, 1.00 ± 0.13 vs 0.43 ± 0.10, P = .0069) compared to control. Treatment with intrathecal antisense oligodeoxynucleotide against cMyc, GSK126 (EZH2 selective inhibitor), or recombinant Sirt3 reduced mechanical allodynia and thermal hyperalgesia in this gp120M pain model. Knockdown of cMyc reduced spinal EZH2 expression in gp120M treated rats. Chromatin immunoprecipitation (ChIP) assay showed that enrichment of cMyc binding to the ezh2 gene promoter region was increased in the gp120M-treated rat spinal dorsal horn, and that intrathecal administration of antisense ODN against cMyc (AS-cMyc) reversed the increased enrichment of cMyc. Enrichment of trimethylation of histone 3 on lysine residue 27 (H3K27me3; an epigenetic mark associated with the downregulation of gene expression) binding to the sirt3 gene promoter region was upregulated in the gp120M-treated rat spinal dorsal horn; that intrathecal GSK126 reversed the increased enrichment of H3K27me3 in the sirt3 gene promoter. Luciferase reporter assay demonstrated that cMyc mediated ezh2 gene transcription at the ezh2 gene promoter region, and that H3K27me3 silenced sirt3 gene transcription at the gene promoter region. CONCLUSION: These results demonstrated that spinal Sirt3 decrease in gp120M-induced neuropathic pain was mediated by cMyc-EZH2/H3K27me3 activity in an epigenetic manner. This study provided new insight into the mechanisms of neuropathic pain in HIV patients with chronic opioids.

12.
Cell Death Dis ; 15(2): 112, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38321024

ABSTRACT

Despite that the docectaxel-cisplatin-5-fluorouracil (TPF) induction chemotherapy has greatly improved patients' survival and became the first-line treatment for advanced nasopharyngeal carcinoma (NPC), not all patients could benefit from this therapy. The mechanism underlying the TPF chemoresistance remains unclear. Here, by analyzing gene-expression microarray data and survival of patients who received TPF chemotherapy, we identify transcription factor ATMIN as a chemoresistance gene in response to TPF chemotherapy in NPC. Mass spectrometry and Co-IP assays reveal that USP10 deubiquitinates and stabilizes ATMIN protein, resulting the high-ATMIN expression in NPC. Knockdown of ATMIN suppresses the cell proliferation and facilitates the docetaxel-sensitivity of NPC cells both in vitro and in vivo, while overexpression of ATMIN exerts the opposite effect. Mechanistically, ChIP-seq combined with RNA-seq analysis suggests that ATMIN is associated with the cell death signaling and identifies ten candidate target genes of ATMIN. We further confirm that ATMIN transcriptionally activates the downstream target gene LCK and stabilizes it to facilitate cell proliferation and docetaxel resistance. Taken together, our findings broaden the insight into the molecular mechanism of chemoresistance in NPC, and the USP10-ATMIN-LCK axis provides potential therapeutic targets for the management of NPC.


Subject(s)
Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/pathology , Docetaxel/therapeutic use , Nasopharyngeal Neoplasms/pathology , Transcription Factors/therapeutic use , Drug Resistance, Neoplasm , Fluorouracil/therapeutic use , Chemoradiotherapy/methods , Cisplatin/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Ubiquitin Thiolesterase
13.
Small ; : e2309648, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38234134

ABSTRACT

The utility of electrochemical active biofilm in bioelectrochemical systems has received considerable attention for harvesting energy and chemical products. However, the slow electron transfer between biofilms and electrodes hinders the enhancement of performance and still remains challenging. Here, using Fe3 O4 /L-Cys nanoparticles as precursors to induce biomineralization, a facile strategy for the construction of an effective electron transfer pathway through biofilm and biological/inorganic interface is proposed, and the underlying mechanisms are elucidated. Taking advantage of an on-chip interdigitated microelectrode array (IDA), the conductive current of biofilm that is related to the electron transfer process within biofilm is characterized, and a 2.10-fold increase in current output is detected. The modification of Fe3 O4 /L-Cys on the electrode surface facilitates the electron transfer between the biofilm and the electrode, as the bio/inorganic interface electron transfer resistance is only 16% compared to the control. The in-situ biosynthetic Fe-containing nanoparticles (e.g., FeS) enhance the transmembrane EET and the EET within biofilm, and the peak conductivity increases 3.4-fold compared to the control. The in-situ biosynthesis method upregulates the genes involved in energy metabolism and electron transfer from the transcriptome analysis. This study enriches the insights of biosynthetic nanoparticles on electron transfer process, holding promise in bioenergy conversion.

14.
Food Sci Biotechnol ; 33(2): 453-464, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38222903

ABSTRACT

The aim of this study was to evaluate the effect of ultrahigh pressure processing (UHP) of 200, 300, 400, 500, 600 and 700 MPa for 20, 40 and 30 min on physicochemical and bioactive properties of the insoluble dietary fiber Pholiota nameko (PN-IDF). The results revealed that UHP were capable of decreasing the particle size of PN-IDF and binding phenolic content. Moreover, UHP technique had an improving effect on the bioaccessible phenolic content, the water-holding capacity, the oil-holding capacity and the nitrite ion adsorption capacity. Further, UHP technique presented a promoting effect on the antioxidant activity by scavenging ABTS or DPPH free radicals and increasing reducing power, and the anti-inflammatory activity by inhibiting carrageenan-induced paw edema on PN-IDF. Overall, this study well proved that UHP technology could improve the physicochemical and functional quality of PN-IDF, which could be used as a promising green technique for functional food ingredients processing.

15.
J Exp Clin Cancer Res ; 43(1): 14, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38191501

ABSTRACT

BACKGROUND: Metastasis has emerged as the major reason of treatment failure and mortality in patients with nasopharyngeal carcinoma (NPC). Growing evidence links abnormal DNA methylation to the initiation and progression of NPC. However, the precise regulatory mechanism behind these processes remains poorly understood. METHODS: Bisulfite pyrosequencing, RT-qPCR, western blot, and immunohistochemistry were used to test the methylation and expression level of NEURL3 and its clinical significance. The biological function of NEURL3 was examined both in vitro and in vivo. Mass spectrometry, co-immunohistochemistry, immunofluorescence staining, and ubiquitin assays were performed to explore the regulatory mechanism of NEURL3. RESULTS: The promoter region of NEURL3, encoding an E3 ubiquitin ligase, was obviously hypermethylated, leading to its downregulated expression in NPC. Clinically, NPC patients with a low NEURL3 expression indicated an unfavorable prognosis and were prone to develop distant metastasis. Overexpression of NEURL3 could suppress the epithelial mesenchymal transition and metastasis of NPC cells in vitro and in vivo. Mechanistically, NEURL3 promoted Vimentin degradation by increasing its K48-linked polyubiquitination at lysine 97. Specifically, the restoration of Vimentin expression could fully reverse the tumor suppressive effect of NEURL3 overexpression in NPC cells. CONCLUSIONS: Collectively, our study uncovers a novel mechanism by which NEURL3 inhibits NPC metastasis, thereby providing a promising therapeutic target for NPC treatment.


Subject(s)
Nasopharyngeal Neoplasms , Ubiquitin-Protein Ligases , Humans , Nasopharyngeal Carcinoma/genetics , Ubiquitin-Protein Ligases/genetics , Vimentin/genetics , Epithelial-Mesenchymal Transition , Nasopharyngeal Neoplasms/genetics
16.
Mol Biol Rep ; 51(1): 139, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38236340

ABSTRACT

BACKGROUND: Ferroptosis is involved in osteoarthritis development; however, the roles of long noncoding RNAs (lncRNAs), including lncRNA MEG3, in the regulation of ferroptosis in osteoarthritis are still unclear. METHODS: In this study, qRT‒PCR and Western blotting assays were used to detect the expression of lncRNA MEG3, miR-885-5p, SLC7A11 and GPX4; MDA and CCK-8 assays were applied to analyse cellular MDA levels and cell viability, respectively. RESULT: Erastin elevated cellular MDA levels and decreased the viability of chondrocytes and the erastin-induced decline in cell viability was reversed by a ferroptosis inhibitor (ferrostatin-1). Erastin downregulated lncRNA MEG3, SLC7A11 and GPX4 and upregulated miR-885-5p. Silencing of lncRNA MEG3 increased miR-885-5p and downregulated SLC7A11 and GPX4 and further sensitized chondrocytes to erastin-induced ferroptosis. In contrast, overexpression of lncRNA MEG3 had opposite effects. Dual luciferase assays confirmed binding between lncRNA MEG3 and miR-885-5p and between miR-885-5p and the 3'UTR of SLC7A11. In the synovial fluids from patients with osteoarthritis compared with synovial fluids from normal controls, the RNA levels of lncRNA MEG3 and SLC7A11 were decreased and the miR-885-5p expression level was increased. CONCLUSION: Our findings indicated that lncRNA MEG3 overexpression alleviated ferroptosis in chondrocytes by affecting the miR-885-5p/SLC7A11 signalling pathway.


Subject(s)
Ferroptosis , MicroRNAs , Osteoarthritis , Piperazines , RNA, Long Noncoding , Humans , Amino Acid Transport System y+/genetics , Chondrocytes , Ferroptosis/genetics , MicroRNAs/genetics , Osteoarthritis/genetics , RNA, Long Noncoding/genetics
17.
Adv Mater ; 36(1): e2305854, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37671789

ABSTRACT

As a reliable energy-supply platform for wearable electronics, biosupercapacitors combine the characteristics of biofuel cells and supercapacitors to harvest and store the energy from human's sweat. However, the bulky preparation process and deep embedding of enzyme active sites in bioelectrodes usually limit the energy-harvesting process, retarding the practical power-supply sceneries especially during the complicated in vivo motion. Herein, a MXene/single-walled carbon nanotube/lactate oxidase hierarchical structure as the dual-functional bioanode is designed, which can not only provide a superior 3D catalytic microenvironment for enzyme accommodation to harvest energy from sweat, but also offers sufficient capacitance to store energy via the electrical double-layer capacitor. A wearable biosupercapacitor is fabricated in the "island-bridge" structure with a composite bioanode, active carbon/Pt cathode, polyacrylamide hydrogel substrate, and liquid metal conductor. The device exhibits an open-circuit voltage of 0.48 V and the high power density of 220.9 µW cm-2 at 0.5 mA cm-2 . The compact conformal adhesion with skin is successfully maintained under stretching/bending conditions. After repeatedly stretching the devices, there is no significant power attenuation in pulsed output. The unique bioelectrode structure and attractive energy harvesting/storing properties demonstrate the promising potential of this biosupercapacitor as a micro self-powered platform of wearable electronics.


Subject(s)
Bioelectric Energy Sources , Wearable Electronic Devices , Humans , Electronics , Catalysis
18.
Transl Stroke Res ; 15(1): 219-237, 2024 02.
Article in English | MEDLINE | ID: mdl-36631632

ABSTRACT

Subarachnoid hemorrhage (SAH) is a type of stroke with high morbidity and mortality. Netrin-1 (NTN-1) can alleviate early brain injury (EBI) following SAH by enhancing peroxisome proliferator-activated receptor gamma (PPARγ), which is an important transcriptional factor modulating lipid metabolism. Ferroptosis is a newly discovered type of cell death related to lipid metabolism. However, the specific function of ferroptosis in NTN-1-mediated neuroprotection following SAH is still unclear. This study aimed to evaluate the neuroprotective effects and the possible molecular basis of NTN-1 in SAH-induced EBI by modulating neuronal ferroptosis using the filament perforations model of SAH in mice and the hemin-stimulated neuron injury model in HT22 cells. NTN-1 or a vehicle was administered 2 h following SAH. We examined neuronal death, brain water content, neurological score, and mortality. NTN-1 treatment led to elevated survival probability, greater survival of neurons, and increased neurological score, indicating that NTN-1-inhibited ferroptosis ameliorated neuron death in vivo/in vitro in response to SAH. Furthermore, NTN-1 treatment enhanced the expression of PPARγ, nuclear factor erythroid 2-related factor 2 (Nrf2), and glutathione peroxidase 4 (GPX4), which are essential regulators of ferroptosis in EBI after SAH. The findings show that NTN-1 improves neurological outcomes in mice and protects neurons from death caused by neuronal ferroptosis. Furthermore, the mechanism underlying NTN-1 neuroprotection is correlated with the inhibition of ferroptosis, attenuating cell death via the PPARγ/Nrf2/GPX4 pathway and coenzyme Q10-ferroptosis suppressor protein 1 (CoQ10-FSP1) pathway.


Subject(s)
Brain Injuries , Ferroptosis , Subarachnoid Hemorrhage , Rats , Mice , Animals , NF-E2-Related Factor 2/metabolism , PPAR gamma , Rats, Sprague-Dawley , Subarachnoid Hemorrhage/complications , Netrin-1/pharmacology , Brain Injuries/drug therapy , Brain Injuries/etiology , Brain Injuries/metabolism , Signal Transduction
19.
Bioelectrochemistry ; 156: 108622, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38070364

ABSTRACT

Microbial fuel cells (MFCs) are an emerging technology in renewable energy and waste treatment and the scale-up is crucial for practical applications. Undoubtedly, the analysis and comprehension of MFC operation necessitate essential information regarding the response of the current distribution to variable operating conditions, which stands as one of its significant dynamic characteristics. In this study, the dynamic responses of current distribution to external stimuli (external load, temperature, pH, and electrolyte concentration) were investigated by employing a segmented anode current collector in a liter-scale MFC. The results demonstrated that, with respect to the anodic segment close to the cathode, a major response of the segment current to changes in load, temperature and pH was observed while minor response to changes in ion concentration. It was also found that external stimuli-induced high current usually led to a worse current distribution while increasing electrolyte ion concentration could simultaneously improve the maximal power generation and current distribution. In addition, the response time of segment current to input stimulus followed the pattern of temperature ˃ pH ˃ ion concentration ˃ external load. The results and implication of this study would be helpful in enhancing the operational stability of scale-up MFCs in future practical application.


Subject(s)
Bioelectric Energy Sources , Temperature , Electrodes , Electrolytes
20.
Sci Rep ; 13(1): 21667, 2023 12 08.
Article in English | MEDLINE | ID: mdl-38066007

ABSTRACT

Biomedical named entity recognition (BioNER) is an essential task in biomedical information analysis. Recently, deep neural approaches have become widely utilized for BioNER. Biomedical dictionaries, implemented through a masked manner, are frequently employed in these methods to enhance entity recognition. However, their performance remains limited. In this work, we propose a dictionary-based matching graph network for BioNER. This approach utilizes the matching graph method to project all possible dictionary-based entity combinations in the text onto a directional graph. The network is implemented coherently with a bi-directional graph convolutional network (BiGCN) that incorporates the matching graph information. Our proposed approach fully leverages the dictionary-based matching graph instead of a simple masked manner. We have conducted numerous experiments on five typical Bio-NER datasets. The proposed model shows significant improvements in F1 score compared to the state-of-the-art (SOTA) models: 2.8% on BC2GM, 1.3% on BC4CHEMD, 1.1% on BC5CDR, 1.6% on NCBI-disease, and 0.5% on JNLPBA. The results show that our model, which is superior to other models, can effectively recognize natural biomedical named entities.


Subject(s)
Data Mining , Names , Data Mining/methods , Recognition, Psychology
SELECTION OF CITATIONS
SEARCH DETAIL
...