Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 103(14): 5851-5865, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31115634

ABSTRACT

Fusarium graminearum is a prominent fungal pathogen that causes economically important losses by infesting a wide variety of cereal crops. F. graminearum produces both asexual and sexual spores which disseminate and inoculate hosts. Therefore, to better understand the disease cycle and to develop strategies to improve disease management, it is important to further clarify molecular mechanisms of F. graminearum conidiogenesis. In this study, we functionally characterized the FgMed1, a gene encoding an ortholog of a conserved MedA transcription factor known to be a key conidiogenesis regulator in Aspergillus nidulans. The gene deletion mutants ΔFgMed1 produced significantly less conidia, and these were generated from abnormal conidiophores devoid of phialides. Additionally, we observed defective sexual development along with reduced virulence and deoxynivalenol (DON) production in ΔFgMed1. The GFP-tagged FgMed1 protein localized to the nuclei of conidiophores and phialides during early conidiogenesis. Significantly, RNA-Seq analyses showed that a number of the conidiation- and toxin-related genes are differentially expressed in the ΔFgMed1 mutant in early conidiogenesis. These data strongly suggest that FgMed1 involved in regulation of genes associated with early conidiogenesis, DON production, and virulence in F. graminearum.


Subject(s)
Fungal Proteins/genetics , Fusarium/genetics , Gene Expression Regulation, Fungal , Spores, Fungal/genetics , Transcription Factors/genetics , Trichothecenes/biosynthesis , Fusarium/pathogenicity , Gene Deletion , Mutation , Plant Diseases/microbiology , Sequence Analysis, RNA , Spores, Fungal/growth & development , Virulence
2.
BMC Genomics ; 19(1): 927, 2018 Dec 13.
Article in English | MEDLINE | ID: mdl-30545292

ABSTRACT

BACKGROUND: A number of Pyricularia species are known to infect different grass species. In the case of Pyricularia oryzae (syn. Magnaporthe oryzae), distinct populations are known to be adapted to a wide variety of grass hosts, including rice, wheat and many other grasses. The genome sizes of Pyricularia species are typical for filamentous ascomycete fungi [~ 40 Mbp for P. oryzae, and ~ 45 Mbp for P. grisea]. Genome plasticity, mediated in part by deletions promoted by recombination between repetitive elements [Genome Res 26:1091-1100, 2016, Nat Rev Microbiol 10:417-430,2012] and transposable elements [Annu Rev Phytopathol 55:483-503,2017] contributes to host adaptation. Therefore, comparisons of genome structure of individual species will provide insight into the evolution of host specificity. However, except for the P. oryzae subgroup, little is known about the gene content or genome organization of other Pyricularia species, such as those infecting Pennisetum grasses. RESULTS: Here, we report the genome sequence of P. penniseti strain P1609 isolated from a Pennisetum grass (JUJUNCAO) using PacBio SMRT sequencing technology. Phylogenomic analysis of 28 Magnaporthales species and 5 non-Magnaporthales species indicated that P1609 belongs to a Pyricularia subclade, which is genetically distant from P. oryzae. Comparative genomic analysis revealed that the pathogenicity-related gene repertoires had diverged between P1609 and the P. oryzae strain 70-15, including the known avirulence genes, other putative secreted proteins, as well as some other predicted Pathogen-Host Interaction (PHI) genes. Genomic sequence comparison also identified many genomic rearrangements relative to P. oryzae. CONCLUSION: Our results suggested that the genomic sequence of the P. penniseti P1609 could be a useful resource for the genetic study of the Pennisetum-infecting Pyricularia species and provide new insight into evolution of pathogen genomes during host adaptation.


Subject(s)
Ascomycota/genetics , Comparative Genomic Hybridization , Genes, Fungal , Pennisetum/microbiology , Ascomycota/classification , Ascomycota/pathogenicity , DNA, Fungal/chemistry , DNA, Fungal/isolation & purification , DNA, Fungal/metabolism , Gene Rearrangement , Host-Pathogen Interactions/genetics , Magnaporthe/classification , Magnaporthe/genetics , Magnaporthe/pathogenicity , Phylogeny , Plant Diseases/microbiology , Sequence Analysis, DNA , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...