Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 6501, 2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36310175

ABSTRACT

Antiferromagnetic (AFM) materials are attracting tremendous attention due to their spintronic applications and associated novel topological phenomena. However, detecting and identifying the spin configurations in AFM materials are quite challenging due to the absence of net magnetization. Herein, we report the practicality of utilizing the planar Hall effect (PHE) to detect and distinguish "cluster magnetic multipoles" in AFM Nd2Ir2O7 (NIO-227) fully strained films. By imposing compressive strain on the spin structure of NIO-227, we artificially induced cluster magnetic multipoles, namely dipoles and A2- and T1-octupoles. Importantly, under magnetic field rotation, each magnetic multipole exhibits distinctive harmonics of the PHE oscillation. Moreover, the planar Hall conductivity has a nonlinear magnetic field dependence, which can be attributed to the magnetic response of the cluster magnetic octupoles. Our work provides a strategy for identifying cluster magnetic multipoles in AFM systems and would promote octupole-based AFM spintronics.

2.
Nat Commun ; 13(1): 4662, 2022 Aug 09.
Article in English | MEDLINE | ID: mdl-35945225

ABSTRACT

Plasmons in strongly correlated systems are attracting considerable attention due to their unconventional behavior caused by electronic correlation effects. Recently, flat plasmons with nearly dispersionless frequency-wave vector relations have drawn significant interest because of their intriguing physical origin and promising applications. However, these flat plasmons exist primarily in low-dimensional materials with limited wave vector magnitudes (q < ~0.7 Å-1). Here, we show that long-lived flat plasmons can propagate up to ~1.2 Å-1 in α-Ti2O3, a strongly correlated three-dimensional Mott-insulator, with an ultra-small energy fluctuation (<40 meV). The strong correlation effect renormalizes the electronic bands near Fermi level with a small bandwidth, which is responsible for the flat plasmons in α-Ti2O3. Moreover, these flat plasmons are not affected by Landau damping over a wide range of wave vectors (q < ~1.2 Å-1) due to symmetry constrains on the electron wavefunctions. Our work provides a strategy for exploring flat plasmons in strongly correlated systems, which in turn may give rise to novel plasmonic devices in which flat and long-lived plasmons are desirable.

SELECTION OF CITATIONS
SEARCH DETAIL
...