Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 744
Filter
1.
Article in English | MEDLINE | ID: mdl-38828942

ABSTRACT

CONTEXT: Low vitamin D status is common and is associated with various common medical conditions. OBJECTIVE: To support the development of the Endocrine Society's Clinical Practice Guideline on Vitamin D for the Prevention of Disease. METHODS: We searched multiple databases for studies that addressed 14 clinical questions prioritized by the guideline panel. Of the 14 questions, 10 clinical questions assessed the effect of vitamin D vs no vitamin D in the general population throughout the lifespan, during pregnancy, and in adults with prediabetes; 1 question assessed dosing; and 3 questions addressed screening with serum 25-hydroxyvitamin D (25[OH]D). The Grading of Recommendations Assessment, Development and Evaluation approach was used to assess certainty of evidence. RESULTS: Electronic searches yielded 37 007 citations, from which we included 151 studies. In children and adolescents, low-certainty evidence suggested reduction in respiratory tract infections with empiric vitamin D. There was no significant effect on select outcomes in healthy adults aged 19 to 74 years with variable certainty of evidence. There was a very small reduction in mortality among adults older than 75 years with high certainty of evidence. In pregnant women, low-certainty evidence suggested possible benefit on various maternal, fetal, and neonatal outcomes. In adults with prediabetes, moderate certainty of evidence suggested reduction in the rate of progression to diabetes. Administration of high-dose intermittent vitamin D may increase falls, compared to lower-dose daily dosing. We did not identify trials on the benefits and harms of screening with serum 25(OH)D. CONCLUSION: The evidence summarized in this systematic review addresses the benefits and harms of vitamin D for the prevention of disease. The guideline panel considered additional information about individuals' and providers' values and preferences and other important decisional and contextual factors to develop clinical recommendations.

2.
Angew Chem Int Ed Engl ; : e202404374, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38726699

ABSTRACT

Strategies for discovery of high-performance electrocatalysts are important to advance clean energy technologies. Metastable phases such as low temperature or interfacial structures that are difficult to access in bulk may offer such catalytically active surfaces. We report here that the suboxide Zr3O, which is formed at Zr-ZrO2 interfaces but does not appear in the experimental Zr-O phase diagram exhibits outstanding oxygen reduction reaction (ORR) performance surpassing that of benchmark Pt/C and most transition metal-based catalysts. Addition of Fe3C nanoparticles to give a Zr-Zr3O-Fe3C/NC catalyst (NC = nitrogen-doped carbon) gives a half-wave potential (E1/2) of 0.914 V, outperforming Pt/C and showing only a 3 mV decrease after 20,000 electrochemical cycles. A zinc-air battery (ZAB) using this cathode material has a high power density of 241.1 mW cm-2 and remains stable for over 50 days of continuous cycling, demonstrating potential for practical applications. Zr3O demonstrates that interfacial or other phases that are difficult to stabilize may offer new directions for the discovery of high-performance electrocatalysts.

3.
Psych J ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38692576

ABSTRACT

The phenomenon of nomophobia, defined as the anxiety experienced when a person is without their mobile phone or is unable to use it, has been identified as having serious negative effects on individuals, particularly students. Previous research has explored the relationship between personality traits and nomophobia, but the findings have been inconclusive. The main objective of this study was to classify personality types through latent class analysis and explore the relationship between these personality types and nomophobia. The Chinese version of the Nomophobia Scale and the Chinese brief version of the Big Five Personality Inventory were used in this study to survey 1906 Chinese college students. The results indicated that (1) a four-class model provided the best fit and categorized the personality traits as the overcontrolled class, resilient class, moderate class, and vulnerable class; (2) significant differences were observed between the four personality types and nomophobia, with overcontrolled and resilient personality types consistently scoring significantly lower than moderate and vulnerable personality types. Our finding highlights the key feature of the study.

4.
Sci Adv ; 10(20): eadn7012, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758788

ABSTRACT

The ocean, a vast hydrogen reservoir, holds potential for sustainable energy and water development. Developing high-performance electrocatalysts for hydrogen production under harsh seawater conditions is challenging. Here, we propose incorporating a protective V2O3 layer to modulate the microcatalytic environment and create in situ dual-active sites consisting of low-loaded Pt and Ni3N. This catalyst demonstrates an ultralow overpotential of 80 mV at 500 mA cm-2, a mass activity 30.86 times higher than Pt-C and maintains at least 500 hours in seawater. Moreover, the assembled anion exchange membrane water electrolyzers (AEMWE) demonstrate superior activity and durability even under demanding industrial conditions. In situ localized pH analysis elucidates the microcatalytic environmental regulation mechanism of the V2O3 layer. Its role as a Lewis acid layer enables the sequestration of excess OH- ions, mitigate Cl- corrosion, and alkaline earth salt precipitation. Our catalyst protection strategy by using V2O3 presents a promising and cost-effective approach for large-scale sustainable green hydrogen production.

5.
Hereditas ; 161(1): 17, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755697

ABSTRACT

BACKGROUND: This study investigates the therapeutic mechanisms of dendrobine, a primary bioactive compound in Dendrobium nobile, for Metabolic Associated Fatty Liver Disease (MASLD) management. Utilizing network pharmacology combined with experimental validation, the clinical effectiveness of dendrobine in MASLD treatment was assessed and analyzed. RESULTS: The study demonstrates significant improvement in liver function among MASLD patients treated with Dendrobium nobile. Network pharmacology identified key targets such as Peroxisome Proliferator-Activated Receptor Gamma (PPARG), Interleukin 6 (IL6), Tumor Necrosis Factor (TNF), Interleukin 1 Beta (IL1B), and AKT Serine/Threonine Kinase 1 (AKT1), with molecular docking confirming their interactions. Additionally, dendrobine significantly reduced ALT and AST levels in palmitic acid-treated HepG2 cells, indicating hepatoprotective properties and amelioration of oxidative stress through decreased Malondialdehyde (MDA) levels and increased Superoxide Dismutase (SOD) levels. CONCLUSION: Dendrobine mitigates liver damage in MASLD through modulating inflammatory and immune responses and affecting lipid metabolism, potentially by downregulating inflammatory mediators like TNF, IL6, IL1B, and inhibiting AKT1 and Signal Transducer and Activator of Transcription 3 (STAT3). This study provides a theoretical basis for the application of dendrobine in MASLD treatment, highlighting its potential as a therapeutic agent.


Subject(s)
Network Pharmacology , Humans , Hep G2 Cells , Dendrobium , Molecular Docking Simulation , Male , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Oxidative Stress/drug effects , Female , Proto-Oncogene Proteins c-akt/metabolism , Middle Aged , Fatty Liver/drug therapy , Fatty Liver/metabolism , Lipid Metabolism/drug effects , Plant Extracts/therapeutic use , Plant Extracts/pharmacology
6.
Bioact Mater ; 37: 549-562, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38756420

ABSTRACT

Zinc (Zn) alloys have demonstrated significant potential in healing critical-sized bone defects. However, the clinical application of Zn alloys implants is still hindered by challenges including excessive release of zinc ions (Zn2+), particularly in the early stage of implantation, and absence of bio-functions related to complex bone repair processes. Herein, a biodegradable aliphatic polycarbonate drug-eluting coating was fabricated on zinc-lithium (Zn-Li) alloys to inhibit Zn2+ release and enhance the osteogenesis, angiogenesis, and bacteriostasis of Zn alloys. Specifically, the photo-curable aliphatic polycarbonates were co-assembled with simvastatin and deposited onto Zn alloys to produce a drug-loaded coating, which was crosslinked by subsequent UV light irradiation. During the 60 days long-term immersion test, the coating showed distinguished stable drug release and Zn2+ release inhibition properties. Benefiting from the regulated release of Zn2+ and simvastatin, the coating facilitated the adhesion, proliferation, and differentiation of MC3T3-E1 cells, as well as the migration and tube formation of EA.hy926 cells. Astonishingly, the coating also showed remarkable antibacterial properties against both S. aureus and E. coli. The in vivo rabbit critical-size femur bone defects model demonstrated that the drug-eluting coating could efficiently promote new bone formation and the expression of platelet endothelial cell adhesion molecule-1 (CD31) and osteocalcin (OCN). The enhancement of osteogenesis, angiogenesis, and bacteriostasis is achieved by precisely controlling of the released Zn2+ at an appropriate level, as well as the stable release profile of simvastatin. This tailored aliphatic polycarbonate drug-eluting coating provides significant potential for clinical applications of Zn alloys implants.

7.
Sensors (Basel) ; 24(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38794092

ABSTRACT

Geomagnetic vertical intensity polarization is a method with a clear mechanism, mature processing methods, and a strong ability to extract anomalous information in the quantitative analysis of seismogenic geomagnetic disturbances. The existing analyses of geomagnetic vertical intensity polarization are all based on the 5~100 s frequency band without refinement of the partitioning process. Although many successful results have been obtained, there are still two problems in the process of extracting anomalies: the geomagnetic anomalies that satisfy the determination criteria are still high in occurrence frequency; and the anomalies are distributed over too large an area in space, which leads to difficulties in determining the location of the epicenter. In this study, based on observations from western China, where fluxgate observation points are positioned in areas with frequent, densely distributed medium-strength earthquakes, we refined the frequency bands of geomagnetic vertical intensity polarization, recalculated the spatial and temporal evolution characteristics of geomagnetic disturbances before earthquakes, and improved the crossover frequency anomaly prediction index while promoting the application of the method in earthquake forecasting.

8.
J Ren Nutr ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38821451

ABSTRACT

BACKGROUND AND OBJECTIVES: Chronic kidney disease (CKD) significantly contributes to the socio-economic burden both in China and worldwide. Previous research has shown that experiencing childhood famine is linked to various chronic conditions like diabetes, hypertension, and proteinuria. However, the long-term effects of early life famine exposure on adult kidney function remain unclear. This study investigates whether exposure to the Chinese Great Famine (1959-1962) is associated with a decline in glomerular filtration rate (GFR) later in life. MATERIALS AND METHODS: CHARLS is a population-based observational study. We analyzed data from 8,828 participants in the 2011-2012 baseline survey, updated in 2014. Participants were categorized based on their birth year into fetal-exposed (1959-1962), childhood-exposed (1949-1958), adolescence/adult-exposed (1912-1948), and non-exposed (1963-1989) groups. The estimated GFR (eGFR) was calculated using the CKD-EPI-Cr-Cys equation (2021), with CKD defined as an eGFR below 60 mL/min/1.73 m2. RESULTS: Average eGFR values were 103.0, 96.8, 91.2, and 76.3 mL/min/1.73 m2 for the fetal-exposed, childhood-exposed, adolescence/adult-exposed, and non-exposed groups, respectively. The eGFR in the exposed groups was significantly lower compared to the non-exposed group. Specifically, famine exposure correlated with a lower eGFR (CE -9.14, 95%CI -9.46, -8.82), with the strongest association observed in the adolescence/adult-exposed group (CE -26.74, 95%CI -27.75, -25.74). Adjusting for variables such as demographics, physical and laboratory tests, complications, and personal habits like smoking and drinking did not qualitatively alter this association (CE -1.38, 95%CI -1.72, -1.04). Further stratification by sex, body mass index (BMI), alcohol consumption history, hypertension, diabetes, CESD score, and education level showed that the association remained consistent. CONCLUSIONS: Exposure to famine during different life stages can have enduring effects on GFR decline in humans.

9.
Acta Cardiol ; : 1-16, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722068

ABSTRACT

BACKGROUND AND AIMS: Overweight and obesity have been found to exhibit a statistically significant increase in corrected QT interval (QTc), a major contributing factor to sudden death. However, the influence of widely used weight loss strategies including diet, exercise, anti-obesity drugs, and bariatric surgery on QTc remains inconsistent. Therefore, the present systematic review and meta-analysis aim to quantitatively analyse and evaluate the effect of weight loss on QTc in obese patients after diet control with exercise intervention and anti-obesity drugs, as well as bariatric surgery. METHODS: Twenty randomised controlled trials (RCT) and observational studies were included in the meta-analysis on the effects of weight loss on QTc. The fixed-effects model was employed in the RCTs, and the random-effects model was employed due to the presence of statistical heterogeneity among observational studies. Subgroup analysis was conducted to understand the differences in distinct weight loss methods and follow-up time. RESULTS: Overall, the QTc of people with obesity after weight loss was shorter than that before (mean difference (MD) = 21.97 ms, 95% confidence interval (CI) = 12.42, 31.52, p < .0001). Subgroup analysis restricted to seven included studies whose intervention was diet control with exercise showed a decrease of QTc with statistical significance (MD = 9.35 ms, 95%CI = 2.56, 37.54, p = .007). In the remaining 11 studies, bariatric surgery was the weight loss method. The results also showed a shortening of QTc after surgery, and the difference was statistically significant (MD = 29.04 ms, 95%CI = -16.46, 41.62, p < .00001). A statistically significant difference in QTc shortening at 6 months compared to pre-operation values was further observed (MD = -31.01 ms, 95%CI = -2.89, -59.12, p = .03). The shortening of QTc at 12 months of follow-up was also significantly different from that before surgery (MD = 36.47 ms, 95%CI = 14.17, 58.78, p < .00001). Moreover, the differences became more pronounced as the follow-up time extended. CONCLUSIONS: We demonstrate that weight loss links to a shortened QTc, without considering the means of weight loss. Bariatric surgery has been found to result in a greater reduction in QTc.

10.
iScience ; 27(4): 109506, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38715945

ABSTRACT

It is imperative to explore biomarkers that are both precise and readily accessible in the comprehensive management of breast cancer. A multicenter cohort, including 512 breast cancer patients and 198 nonneoplastic individuals, was recruited to detect the level of tumor-derived extracellular vesicles using our method based on dual DNA tetrahedral nanostructures. The level of tumor-derived extracellular vesicles was significantly higher in newly diagnosed breast cancer patients than in nonneoplastic individuals at a cutoff value of 3.58 U/µL. For postoperative metastasis monitoring, the level of tumor-derived extracellular vesicles was significantly higher in breast cancer patients with metastasis than in those without metastasis at a cutoff value of 3.91 U/µL. Its efficacy of diagnosis and metastasis monitoring was superior to traditional tumor markers. Elevated level of tumor-derived extracellular vesicles served as a predictive biomarker for diagnosis and metastasis monitoring in breast cancer patients.

11.
Adv Mater ; : e2402947, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743762

ABSTRACT

Tin (Sn) -based perovskite solar cells (PSCs) normally show low open circuit voltage due to serious carrier recombination in the devices, which can be attributed to the oxidation and the resultant high p-type doping of the perovskite active layers. Considering the grand challenge to completely prohibit the oxidation of Sn-based perovskites, a feasible way to improve the device performance is to counter-dope the oxidized Sn-based perovskites by replacing Sn2+ with trivalent cations in the crystal lattice, which however is rarely reported. Here, the introduction of Sb3+, which can effectively counter-dope the oxidized perovskite layer and improve the carrier lifetime, is presented. Meanwhile, Sb3+ can passivate deep-level defects and improve carrier mobility of the perovskite layer, which are all favorable for the photovoltaic performance of the devices. Consequently, the target devices yield a relative enhancement of the power conversion efficiency (PCE) of 31.4% as well as excellent shelf-storage stability. This work provides a novel strategy to improve the performance of Sn-based PSCs, which can be developed as a universal way to compensate for the oxidation of Sn-based perovskites in optoelectronic devices.

12.
J Am Chem Soc ; 146(22): 15219-15229, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38775440

ABSTRACT

Unraveling the catalyst surface structure and behavior during reactions is essential for both mechanistic understanding and performance optimization. Here we report a phenomenon of facet-dependent surface restructuring intrinsic to ß-Ni(OH)2 catalysts during oxygen evolution reaction (OER), discovered by the correlative ex situ and operando characterization. The ex situ study after OER reveals ß-Ni(OH)2 restructuring at the edge facets to form nanoporous Ni1-xO, which is Ni deficient containing Ni3+ species. Operando liquid transmission electron microscopy (TEM) and Raman spectroscopy further identify the active role of the intermediate ß-NiOOH phase in both the OER catalysis and Ni1-xO formation, pinpointing the complete surface restructuring pathway. Such surface restructuring is shown to effectively increase the exposed active sites, accelerate Ni oxidation kinetics, and optimize *OH intermediate bonding energy toward fast OER kinetics, which leads to an extraordinary activity enhancement of ∼16-fold. Facilitated by such a self-activation process, the specially prepared ß-Ni(OH)2 with larger edge facets exhibits a 470-fold current enhancement than that of the benchmark IrO2, demonstrating a promising way to optimize metal-(oxy)hydroxide-based catalysts.

13.
Angew Chem Int Ed Engl ; : e202402841, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647519

ABSTRACT

The controlled synthesis of metal nanomaterials with unconventional phases is of significant importance to develop high-performance catalysts for various applications. However, it remains challenging to modulate the atomic arrangements of metal nanomaterials, especially the alloy nanostructures that involve different metals with distinct redox potentials. Here we report the general one-pot synthesis of IrNi, IrRhNi and IrFeNi alloy nanobranches with unconventional hexagonal close-packed (hcp) phase. Notably, the as-synthesized hcp IrNi nanobranches demonstrate excellent catalytic performance towards electrochemical nitrite reduction reaction (NO2RR), with superior NH3 Faradaic efficiency and yield rate of 98.2 % and 34.6 mg h-1 mgcat -1 (75.5 mg h-1 mgIr -1) at 0 and -0.1 V (vs reversible hydrogen electrode), respectively. Ex/in situ characterizations and theoretical calculations reveal that the Ir-Ni interactions within hcp IrNi alloy improve electron transfer to benefit both nitrite activation and active hydrogen generation, leading to a stronger reaction trend of NO2RR by greatly reducing energy barriers of rate-determining step.

14.
Int J Biol Macromol ; 267(Pt 2): 131658, 2024 May.
Article in English | MEDLINE | ID: mdl-38636759

ABSTRACT

Moisture evaporation plays a crucial role in thermal management of human body, particularly in perspiration process. However, current fabrics aim for sweat removal and takes little account of basic thermo-regulation of sweat, resulted in their limited evaporation capacity and heat dissipation at moderate/intense scenarios. In this study, a hygroscopic cooling (h-cool) fabric based on multi-functional design, for personal perspiration management, was described. By using economic and effective weaving technology, directional moisture transport routes and heat conductive pathways were incorporated in the construct. The resultant fabric showed 10 times greater one-way transport index higher than cotton, Dri-FIT and Coolswitch fabrics, which contributed to highly enhanced evaporation ability (∼4.5 times than cotton), not merely liquid diffusion. As a result, h-cool fabric performed 2.1-4.2 °C cooling efficacy with significantly reduced sweat consuming than cotton, Dri-FIT and Coolswitch fabrics in the artificial sweating skin. Finally, the practical applications by actually wearing h-cool fabric showed great evaporative-cooling efficacy during different physical activities. Owing to the excellent thermo-moisture management ability, we expect the novel concept and construct of h-cool fabric can provide promising strategy for developing functional textiles with great "cool" and comfortable "dry" tactile sensation at various daily scenarios.


Subject(s)
Sweat , Textiles , Humans , Sweat/chemistry , Hot Temperature , Wettability , Sweating
15.
Cereb Cortex ; 34(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38584086

ABSTRACT

Machine learning is an emerging tool in clinical psychology and neuroscience for the individualized prediction of psychiatric symptoms. However, its application in non-clinical populations is still in its infancy. Given the widespread morphological changes observed in psychiatric disorders, our study applies five supervised machine learning regression algorithms-ridge regression, support vector regression, partial least squares regression, least absolute shrinkage and selection operator regression, and Elastic-Net regression-to predict anxiety and depressive symptom scores. We base these predictions on the whole-brain gray matter volume in a large non-clinical sample (n = 425). Our results demonstrate that machine learning algorithms can effectively predict individual variability in anxiety and depressive symptoms, as measured by the Mood and Anxiety Symptoms Questionnaire. The most discriminative features contributing to the prediction models were primarily located in the prefrontal-parietal, temporal, visual, and sub-cortical regions (e.g. amygdala, hippocampus, and putamen). These regions showed distinct patterns for anxious arousal and high positive affect in three of the five models (partial least squares regression, support vector regression, and ridge regression). Importantly, these predictions were consistent across genders and robust to demographic variability (e.g. age, parental education, etc.). Our findings offer critical insights into the distinct brain morphological patterns underlying specific components of anxiety and depressive symptoms, supporting the existing tripartite theory from a neuroimaging perspective.


Subject(s)
Depression , Gray Matter , Humans , Male , Female , Gray Matter/diagnostic imaging , Depression/diagnostic imaging , Magnetic Resonance Imaging/methods , Anxiety/diagnostic imaging , Anxiety/psychology , Affect
16.
Nat Mater ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589543

ABSTRACT

Unconventional 1T'-phase transition metal dichalcogenides (TMDs) have aroused tremendous research interest due to their unique phase-dependent physicochemical properties and applications. However, due to the metastable nature of 1T'-TMDs, the controlled synthesis of 1T'-TMD monolayers (MLs) with high phase purity and stability still remains a challenge. Here we report that 4H-Au nanowires (NWs), when used as templates, can induce the quasi-epitaxial growth of high-phase-purity and stable 1T'-TMD MLs, including WS2, WSe2, MoS2 and MoSe2, via a facile and rapid wet-chemical method. The as-synthesized 4H-Au@1T'-TMD core-shell NWs can be used for ultrasensitive surface-enhanced Raman scattering (SERS) detection. For instance, the 4H-Au@1T'-WS2 NWs have achieved attomole-level SERS detections of Rhodamine 6G and a variety of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike proteins. This work provides insights into the preparation of high-phase-purity and stable 1T'-TMD MLs on metal substrates or templates, showing great potential in various promising applications.

17.
Heart Vessels ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580850

ABSTRACT

Cardiac amyloidosis is a refractory cardiomyopathy with a poor prognosis and lacks effective treatments. N-terminal pro-brain natriuretic peptide (NT-proBNP) and troponin T are poor prognostic factors for myocardial amyloidosis. However, NT-proBNP and troponin also serve as markers of heart failure and myocardial infarction, lacking specificity. Whether abnormal elevation of alpha-1 antitrypsin in myocardial amyloidosis also predicts the poor prognosis of patients remains unknown. We conducted a retrospective single-center case-control study to analyze the serological and physical examination data of 83 cardiac amyloidosis patients and 68 healthy controls matched by gender and age. We aimed to explore the onset and prognostic factors of cardiac amyloidosis. The serum alpha-1 antitrypsin level (169.78 ± 39.59 mg/dl) in patients with cardiac amyloidosis was significantly higher than that in the normal control (125.92 ± 18.26 mg/dl). Logistic regression results showed that alpha-1 antitrypsin, free sialic acid, high-density lipoprotein cholesterol, apolipoprotein A/B ratio, and homocysteine were predictors of cardiac amyloidosis. Multivariable logistic regression showed that only alpha 1 antitrypsin was an independent risk factor for cardiac amyloidosis. Receiver operating characteristic curve analysis based on the Mayo stage and troponin level showed the cut-off value of 140.55 mg/dl for alpha-1 antitrypsin in predicting cardiac amyloidosis with 81.7% sensitivity and 83.9% specificity. Elevated alpha-1 antitrypsin levels may be an early diagnostic biomarker for cardiac amyloidosis.

18.
Transl Vis Sci Technol ; 13(4): 3, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564201

ABSTRACT

Purpose: The purpose of this study was to evaluate the effects of posterior vitreous detachment (PVD) on visual quality in patients with high myopia, as well as investigate the associated factors of photopic and mesopic contrast sensitivity function (CSF) in high myopia. Methods: Visual quality was comprehensively assessed in patients with high myopia. Visual acuity, contrast sensitivity (CS) at four spatial frequencies (3, 6, 12, and 18 cycles per degree [c.p.d.]) under photopic and mesopic conditions, as well as the modulation transfer function cutoff value (MTFcutoff), the objective scatter index (OSI), the Strehl ratio (SR), and internal aberrations, were measured in this cross-sectional study. Results: This study included 94 eyes from 47 subjects with bilateral high myopia, including 23 eyes with complete PVD (cPVD), 21 eyes with partial PVD (pPVD), and 50 eyes without PVD (nPVD). There was no significant difference in visual quality between the cPVD group and the nPVD group. Whereas in eyes with pPVD, there was a degradation of overall photopic CSF (versus nPVD, P = 0.048), photopic CS at 3 c.p.d. (versus cPVD, P = 0.009 and versus nPVD, P = 0.032), photopic CS at 18 c.p.d. (versus nPVD, P = 0.033), overall mesopic CSF (versus nPVD, P = 0.033), and secondary astigmatism (versus cPVD, P = 0.044). Under photopic conditions, the factors affecting CSF were pPVD and SR, whereas the factors affecting mesopic CSF were pPVD, OSI, and ganglion cell-inner plexiform layer thickness. Conclusions: The pPVD impaired visual quality in patients with high myopia compared to nPVD or cPVD, and pPVD could be a factor explaining CSF at both photopic and mesopic illumination. Translational Relevance: Clinicians need to closely monitor patients with high myopia with pPVD due to the potential decline in visual quality and the development of vitreoretinal disorders.


Subject(s)
Myopia , Vitreous Detachment , Humans , Contrast Sensitivity , Cross-Sectional Studies , Myopia/complications , Myopia/diagnosis , Retina
19.
Adv Sci (Weinh) ; : e2309883, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687196

ABSTRACT

The design of high-entropy single-atom catalysts (HESAC) with 5.2 times higher entropy compared to single-atom catalysts (SAC) is proposed, by using four different metals (FeCoNiRu-HESAC) for oxygen reduction reaction (ORR). Fe active sites with intermetallic distances of 6.1 Å exhibit a low ORR overpotential of 0.44 V, which originates from weakening the adsorption of OH intermediates. Based on density functional theory (DFT) findings, the FeCoNiRu-HESAC with a nitrogen-doped sample were synthesized. The atomic structures are confirmed with X-ray photoelectron spectroscopy (XPS), X-ray absorption (XAS), and scanning transmission electron microscopy (STEM). The predicted high catalytic activity is experimentally verified, finding that FeCoNiRu-HESAC has overpotentials of 0.41 and 0.37 V with Tafel slopes of 101 and 210 mVdec-1 at the current density of 1 mA cm-2 and the kinetic current densities of 8.2 and 5.3 mA cm-2, respectively, in acidic and alkaline electrolytes. These results are comparable with Pt/C. The FeCoNiRu-HESAC is used for Zinc-air battery applications with an open circuit potential of 1.39 V and power density of 0.16 W cm-2. Therefore, a strategy guided by DFT is provided for the rational design of HESAC which can be replaced with high-cost Pt catalysts toward ORR and beyond.

20.
Angew Chem Int Ed Engl ; : e202404109, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38624089

ABSTRACT

Lithium (Li) metal batteries (LMBs) with nickel (Ni)-rich layered oxide cathodes exhibit twice the energy density of conventional Li-ion batteries. However, their lifespan is limited by severe side reactions caused by high electrode reactivity. Fluorinated solvent-based electrolytes can address this challenge, but they pose environmental and biological hazards. This work reports on the molecular engineering of fluorine (F)-free ethers to mitigate electrode surface reactivity in high-voltage Ni-rich LMBs. By merely extending the alkyl chains of traditional ethers, we effectively reduce the catalytic reactivity of the cathode towards the electrolyte at high voltages, which suppresses the oxidation decomposition of the electrolyte, microstructural defects and rock-salt phase formation in the cathode, and gas release issues. The high-voltage Ni-rich NCM811-Li battery delivers capacity retention of 80 % after 250 cycles with a high Coulombic efficiency of 99.85 %, even superior to that in carbonate electrolytes. Additionally, this strategy facilitates passivation of the Li anode by forming a robust solid-electrolyte interphase, boosting the Li reversibility to 99.11 % with a cycling life of 350 cycles, which outperforms conventional F-free ether electrolytes. Consequently, the lifespan of practical LMBs has been prolonged by over 100 % and 500 % compared to those in conventional carbonate- and ether-based electrolytes, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...