Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Cancer Lett ; 592: 216923, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38697462

ABSTRACT

Liver metastasis is common in patients with gallbladder cancer (GBC), imposing a significant challenge in clinical management and serving as a poor prognostic indicator. However, the mechanisms underlying liver metastasis remain largely unknown. Here, we report a crucial role of tyrosine aminotransferase (TAT) in liver metastasis of GBC. TAT is frequently up-regulated in GBC tissues. Increased TAT expression is associated with frequent liver metastasis and poor prognosis of GBC patients. Overexpression of TAT promotes GBC cell migration and invasion in vitro, as well as liver metastasis in vivo. TAT knockdown has the opposite effects. Intriguingly, TAT promotes liver metastasis of GBC by potentiating cardiolipin-dependent mitophagy. Mechanistically, TAT directly binds to cardiolipin and leads to cardiolipin externalization and subsequent mitophagy. Moreover, TRIM21 (Tripartite Motif Containing 21), an E3 ubiquitin ligase, interacts with TAT. The histine residues 336 and 338 at TRIM21 are essential for this binding. TRIM21 preferentially adds the lysine 63 (K63)-linked ubiquitin chains on TAT principally at K136. TRIM21-mediated TAT ubiquitination impairs its dimerization and mitochondrial location, subsequently inhibiting tumor invasion and migration of GBC cells. Therefore, our study identifies TAT as a novel driver of GBC liver metastasis, emphasizing its potential as a therapeutic target.


Subject(s)
Cell Movement , Gallbladder Neoplasms , Liver Neoplasms , Ribonucleoproteins , Ubiquitination , Animals , Humans , Mice , Cell Line, Tumor , Gallbladder Neoplasms/pathology , Gallbladder Neoplasms/genetics , Gallbladder Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Liver Neoplasms/secondary , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Mice, Inbred BALB C , Mice, Nude , Mitophagy , Neoplasm Invasiveness , Ribonucleoproteins/metabolism , Ribonucleoproteins/genetics , Tyrosine Transaminase
2.
Cancer Lett ; 587: 216703, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38341127

ABSTRACT

Gallbladder cancer (GBC) is a highly malignant and rapidly progressing tumor of the human biliary system, and there is an urgent need to develop new therapeutic targets and modalities. Non-POU domain-containing octamer-binding protein (NONO) is an RNA-binding protein involved in the regulation of transcription, mRNA splicing, and DNA repair. NONO expression is elevated in multiple tumors and can act as an oncogene to promote tumor progression. Here, we found that NONO was highly expressed in GBC and promoted tumor cells growth. The dysregulation of RNA splicing is a molecular feature of almost all tumor types. Accordingly, mRNA-seq and RIP-seq analysis showed that NONO promoted exon6 skipping in DLG1, forming two isomers (DLG1-FL and DLG1-S). Furthermore, lower Percent-Spliced-In (PSI) values of DLG1 were detected in tumor tissue relative to the paraneoplastic tissue, and were associated with poor patient prognosis. Moreover, DLG1-S and DLG1-FL act as tumor promoters and tumor suppressors, respectively, by regulating the YAP1/JUN pathway. N6-methyladenosine (m6A) is the most common and abundant RNA modification involved in alternative splicing processes. We identified an m6A reader, IGF2BP3, which synergizes with NONO to promote exon6 skipping in DLG1 in an m6A-dependent manner. Furthermore, IP/MS results showed that RBM14 was bound to NONO and interfered with NONO-mediated exon6 skipping of DLG1. In addition, IGF2BP3 disrupted the binding of RBM14 to NONO. Overall, our data elucidate the molecular mechanism by which NONO promotes DLG1 exon skipping, providing a basis for new therapeutic targets in GBC treatment.


Subject(s)
DNA-Binding Proteins , Gallbladder Neoplasms , Humans , DNA-Binding Proteins/genetics , Gallbladder Neoplasms/genetics , Transcription Factors/genetics , RNA Splicing , Cell Proliferation , RNA, Messenger/genetics , Cell Line, Tumor , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Discs Large Homolog 1 Protein/genetics , Discs Large Homolog 1 Protein/metabolism , Intracellular Signaling Peptides and Proteins/metabolism
3.
Cancer Med ; 12(18): 18861-18871, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37706628

ABSTRACT

BACKGROUND: Three-dimensional visualization preoperative evaluation (3D-VPE) and enhanced recovery after surgery (ERAS) have been suggested to improve outcomes of cancer surgery in patients, yet little is known regarding their clinical benefit in patients with gallbladder cancer (GBC). We hypothesized that the combination of 3D-VPE and ERAS would improve the outcome of patients undergoing surgery for GBC. OBJECTIVE: This study aimed to determine if 3D-VPE and ERAS can improve the outcomes and overall survival in patients with GBC, establishing a novel patient management strategy for GBC. METHODS: A total of 227 patients with GBC were recruited and divided into two groups: those who received traditional treatment between January 2000 and December 2010 (n = 86; the control group) and those who underwent 3D-VPE and ERAS between January 2011 and December 2017 (n = 141). Univariate and multivariate analyses were employed to assess the relationship among disease stages, lymph node invasion, and cell differentiation between the two groups. Cox regression analysis was used to investigate patient survival in these groups. RESULTS: Patients who underwent 3D-VPE and ERAS showed a significantly higher R0 resection rate (67.4% vs. 20.9%, p < 0.001) and dissected lymph node number (26.6 ± 12.6 vs. 16.3 ± 7.6 p < 0.001) compared to the control group. The median survival was 27.4 months, and the 1- and 3-year survival rates were 84.4% and 29.8%, respectively, in patients who received combined management; in the control cohort, the median survival was 12.7 months, and the 1- and 3-year survival rates were 53.5% and 15.1%, respectively. In addition, some postoperative complications and risk factors were diminished relative to the traditionally treated patients. CONCLUSION: The implementation of 3D-VPE and ERAS can significantly improve the prognosis and outcomes of patients with GBC and should be considered for wide use in clinical practice.

4.
Cell Signal ; 108: 110710, 2023 08.
Article in English | MEDLINE | ID: mdl-37156453

ABSTRACT

Gallbladder cancer (GBC) is a type of rare but highly aggressive cancer with a dismal prognosis. Runt-related transcription factor 3 (RUNX3), a member of the runt-domain family, and its promoter methylation have been widely observed in a variety of human malignancies. However, the biological function and underlying mechanism of RUNX3 in GBC remain elusive. In this study, bisulfate sequencing PCR (BSP), Western blot, and qPCR were applied to identify the expression level and DNA methylation level of RUNX3 in GBC tissues and cells. The transcriptional relationship between RUNX3 and Inhibitor of growth 1 (ING1) was validated by dual-luciferase reporter assay and ChIP assay. A series of gain-of-function and loss-of-function assays were performed to detect the function and the regulatory relationship of RUNX3 in vitro and in vivo. RUNX3 was aberrantly downregulated in GBC cells and tissues caused by DNA Methyltransferase 1 (DNMT1)-mediated methylation, and downregulation of RUNX3 is associated with poor prognosis of GBC patients. Functional experiments reveal that RUNX3 can induce ferroptosis of GBC cells in vitro and in vivo. Mechanistically, RUNX3 induces ferroptosis by activating ING1 transcription, thereby repressing SLC7A11 in a p53-dependent manner. In conclusion, the downregulation of RUNX3 is mediated by DNA methylation, which promotes the pathogenesis of gallbladder cancer through attenuating SLC7A11-mediated ferroptosis. This study gives novel insights into the role of RUNX3 in the ferroptosis of GBC cells, which may contribute to developing potential treatment targets for GBC.


Subject(s)
Ferroptosis , Gallbladder Neoplasms , Humans , Amino Acid Transport System y+/genetics , Cell Line, Tumor , DNA Methylation , Gallbladder Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Promoter Regions, Genetic
5.
Front Oncol ; 12: 977963, 2022.
Article in English | MEDLINE | ID: mdl-36052238

ABSTRACT

Objective: Gallbladder cancer (GBC) is highly malignant and is often diagnosed at the advanced stage. Lack of opportunity to surgery results in an unsatisfactory outcome. This pilot study employed gemcitabine combined with nab-paclitaxel (AG) as a conversion therapeutic measure for locally advanced GBC and successfully achieved conversion surgery in three initially unresectable GBC patients. We will introduce our experience on improving the outcome of this dismal disease. Methods: Radiology and nuclear medicine imaging were performed in each patient, and resectability was evaluated by joint consultation of our multi-disciplinary team (MDT). Patients evaluated as unresectable were treated with the AG regimen and re-evaluated for treatment response. When complete or partial response is achieved, MDT opinion would be required to assess the possibility of performing conversion surgery with R0 resection. Results: Three GBC patients who were initially evaluated as unresectable successfully underwent R0 resection after conversion therapy with the AG regimen. The first case was a recurrent GBC patient evaluated as locally advanced and eventually achieved pathological complete response. The second case was a GBC patient who underwent R1 resection with residual lesions in the gallbladder bed and isolated No. 16 lymph node metastasis and who had a pathologically complete response after treatment. The third case had multiple but resectable liver metastases; both objective response and partial pathologic response were achieved. None of the patients experienced serious treatment-related adverse events. All cases revealed no evidence of recurrence or metastasis after a median follow-up of 12 months. Conclusions: Conversion therapy shows a favorable efficacy in those unresectable GBC patients. Gemcitabine plus nab-paclitaxel has the potential to be used as a preoperative treatment option for GBC patients at the advanced stage. To further explore the efficacy of AG on conversion therapy for GBC patients, a prospective clinical trial has been registered (ChiCTR2200055698).

6.
Cancer Lett ; 547: 215862, 2022 10 28.
Article in English | MEDLINE | ID: mdl-35953000

ABSTRACT

The long non-coding RNAs (lncRNAs) have been implicated in multiple human cancers, which may offer great potential as putative targets for cancer diagnosis and treatment. However, the roles of most lncRNAs in gallbladder cancer (GBC) remain poorly understood. The objective of this research involves investigating the clinical implications and underlying mechanism of lncRNA motor neuron and pancreas homeobo×1 antisense RNA 1 (MNX1-AS1) in GBC. This study shows that MNX1-AS1 expression is elevated in the tissues of GBC patients, and is strongly associated with reduced patient survival. Functionally, MNX1-AS1 significantly stimulates the proliferation and metastasis of GBC cells in vitro and in vivo. Mechanistically, MNX1-AS1 is transcriptionally activated by TEA domain family member 4 (TEAD4), and suppresses insulin-like growing factor 2 mRNA-binding protein 3 (IGF2BP3) degradation by recruiting ubiquitin specific peptidase 16 (USP16). Furthermore, MNX1-AS1/IGF2BP3 axis inhibits the Hippo signaling pathway and subsequently activates TEAD4, thereby forming a positive feedback loop. According to our results, MNX1-AS1 facilitates tumorigenesis, progression and metastasis of GBC through a MNX1-AS1/IGF2BP3/Hippo pathway positive feedback loop, which could be both diagnostically and therapeutically helpful in GBC.


Subject(s)
Gallbladder Neoplasms , MicroRNAs , RNA, Long Noncoding , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Feedback , Gallbladder Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Hippo Signaling Pathway , Homeodomain Proteins/genetics , Humans , Insulin/metabolism , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Messenger , RNA-Binding Proteins/genetics , TEA Domain Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitin Thiolesterase
7.
Hepatobiliary Surg Nutr ; 10(4): 498-506, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34430528

ABSTRACT

BACKGROUND: The first-line chemotherapy regimen for advanced gallbladder cancer (GBC) is gemcitabine plus platinum (GP), despite its efficacy is limited. The current investigation is a retrospective study to compare the safety and efficacy between the modified FOLFIRINOX (mFOLFIRINOX) and gemcitabine plus oxaliplatin (GEMOX) as the first-line chemotherapy for unresectable locally advanced or metastatic GBC. METHODS: The data of patients with unresectable locally advanced or metastatic GBC, who were treated with mFOLFIRINOX or GEMOX as the first-line therapy between April 2014 and April 2018 at Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, were retrieved. This retrospective study evaluated the clinical characteristics, survival outcomes and adverse events. RESULTS: A total of 44 patients (n=25 in mFOLFIRINOX, n=19 in GEMOX) were included. There were no significant differences between groups in baseline characteristics. The median progression free survival (mPFS) was 5.0 months in the mFOLFIRINOX group and 2.5 months in the GEMOX group [P=0.021; hazard ratio (HR), 0.499; 95% CI, 0.266 to 0.937]. The median overall survival (mOS) was 9.5 months in the mFOLFIRINOX group and 7.0 months in the GEMOX group (P=0.019; HR, 0.471; 95% CI, 0.239 to 0.929). Disease control rate (DCR) was 76.0% in the mFOLFIRINOX group and 47.4% in the GEMOX group (P=0.051). The rate of grade 3-4 adverse events was 48% in the mFOLFIRINOX group and 36.8% in the GEMOX group (P=0.459). The incidence of grade 3-4 neutropenia and diarrhea were more common in the mFOLFIRINOX group, while the incidence of grade 3-4 thrombocytopenia and peripheral neuropathy were more common in the GEMOX group. CONCLUSIONS: mFOLFIRINOX might improve the poor prognosis of unresectable locally advanced or metastatic GBC, and the results need to be further verified by prospective clinical studies.

8.
BMC Cancer ; 21(1): 818, 2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34266407

ABSTRACT

BACKGROUND: Gemcitabine plus platinum as the first-line chemotherapy for cholangiocarcinoma (CCA) has limited efficacy. The aim of this study was to evaluate the effectiveness of modified FOLFIRINOX (mFOLFIRINOX) compared to that of gemcitabine plus oxaliplatin (Gemox) for patients with locally advanced or metastatic CCA. METHODS: From January 2016 to December 2019, consecutive patients who were diagnosed with locally advanced or metastatic CCA were treated with either mFOLFIRINOX or Gemox as a first-line chemotherapy. The main endpoint was Progression free survival (PFS). The second endpoints were Overall survival (OS), Disease control rate (DCR) and incidence of severe toxicity (grade 3-4). Tumors were evaluated at baseline and thence every 4-6 weeks. The study was designed and carried out in accordance with the principles of the declaration of Helsinki, approved by the Ethics Committee of Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine (XHEC-D-2020-154) and registered with ClinicalTrials.gov , number NCT04305288 (registration date: 12/03/2020). RESULTS: Of 49 patients in this study, 27 were in the FOLFIRINOX regimen group and 22 in the Gemox regimen group. There were no significant differences between groups in baseline characteristics. The DCR was 77.8% in the mFOLFIRINOX group and 63.5% in the Gemox group. The corresponding median PFS was 9.9 months (95% confidence interval [CI], 7.3-12.4) in the mFOLFIRINOX group versus 6.4 months (95% CI,3.6-9.2, p = 0.040) in the Gemox group. The corresponding median OS was 15.7 months (95% CI, 12.5-19.0) versus 12.0 months (95% CI, 9.3-14.8, p = 0.099). Significantly more grade 3-4 vomiting occurred in the mFOLFIRINOX than the Gemox groups (7 (25.9%) vs 1 (4.5%), p = 0.044). CONCLUSIONS: First-line mFOLFIRINOX offered more promising results in patients with advanced or metastatic CCA.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cholangiocarcinoma/drug therapy , Deoxycytidine/analogs & derivatives , Oxaliplatin/therapeutic use , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cholangiocarcinoma/pathology , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Female , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Humans , Irinotecan/pharmacology , Irinotecan/therapeutic use , Leucovorin/pharmacology , Leucovorin/therapeutic use , Male , Middle Aged , Oxaliplatin/pharmacology , Retrospective Studies , Gemcitabine
9.
Clin Transl Med ; 10(7): e201, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33252861

ABSTRACT

BACKGROUND: Long noncoding RNAs (lncRNA) represent significant factors of the mammalian transcriptome that mediates varied biological and pathological processes. The liver is the most common site for gallbladder cancer (GBC) distant metastasis and contributes to the majority of GBC-related death. How lncRNA affects GBC metastasis is not completely understood. RESULTS: A novel lncRNA termed lncGALM (lncRNA in GBC associated with liver metastasis) was discovered to be highly expressed in cancer patients and xenografted tumors with liver metastasis. Elevated lncGALM in GBC patients also correlated to decreased survival. Invasion and migration of GBC cells were enhanced through lncGALM, both in vitro and in vivo. lncGALM functioned as sponges by competitively binding to and inactivating miR-200 family members, which increase epithelial-mesenchymal transition-associated transcription factor ZEB1 and ZEB2, leading to a fibroblastic phenotype and increased expression of N-cadherin. In addition, lncGALM bound to IL-1ß mRNA and stabilized the IL-1ß gene that mediates liver sinusoidal endothelial cell (LSECs) apoptosis. lncGALM-expressing LiM2-NOZ cells acquired a strong ability to migrate and adhere to LSECs, promoting LSECs apoptosis and therefore facilitating tumor cell extravasation and dissemination. CONCLUSIONS: lncGALM promotes GBC liver metastasis by facilitating GBC cell migration, invasion, liver arrest, and extravasation via the invasion-metastasis cascade. Targeting lncGALM may be protective against the development of liver metastasis in GBC patients.

10.
Cancer Sci ; 110(11): 3510-3519, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31487418

ABSTRACT

NOP2/Sun domain family, member 2 (NSUN2) is a nuclear RNA methyl-transferase catalyzing 5-methylcytosine formation. Evidence shows that NSUN2 is correlated with cell unlimited proliferation. However, its functional role in gallbladder carcinoma (GBC), which is the most common biliary tract malignancy and has a poor prognosis, remains to be determined. Here we found that NSUN2 was highly expressed in GBC tissues as well as cell lines. NSUN2 silencing repressed GBC cell proliferation and tumorigenesis both in vitro and in vivo. Conversely, upregulation of NSUN2 enhanced GBC cell growth and colony formation. We further discovered that RPL6 was a closely interacting partner with NSUN2. Silencing RPL6 resulted in insufficient NSUN2 translational level and accumulative NSUN2 transcriptional level. Exogenous expression of NSUN2 partially rescued the effect of RPL6 in gallbladder cancer progression. Taken together, our data provided novel mechanic insights into the function of NSUN2 in GBC, thus pointing to NSUN2 as a potential and effective therapeutic approach to GBC treatment.


Subject(s)
Carcinoma/metabolism , Gallbladder Neoplasms/metabolism , Methyltransferases/metabolism , Neoplasm Proteins/metabolism , Ribosomal Proteins/metabolism , Animals , Carcinoma/pathology , Carcinoma/therapy , Cell Line, Tumor , Cell Proliferation , Cholecystitis/metabolism , Disease Progression , Gallbladder Neoplasms/pathology , Gallbladder Neoplasms/therapy , Humans , Methyltransferases/antagonists & inhibitors , Mice , Mice, Nude , Tumor Stem Cell Assay , Up-Regulation
11.
Gut ; 68(6): 1024-1033, 2019 06.
Article in English | MEDLINE | ID: mdl-29954840

ABSTRACT

OBJECTIVES: Patients with gallbladder carcinoma (GBC) lack effective treatment methods largely due to the inadequacy of both molecular characterisation and potential therapeutic targets. We previously uncovered a spectrum of genomic alterations and identified recurrent mutations in the ErbB pathway in GBC. Here, we aimed to study recurrent mutations of genes and pathways in a larger cohort of patients with GBC and investigate the potential mechanisms and clinical significance of these mutations. DESIGN: We performed whole-exome sequencing (WES) in 157 patients with GBC. Functional experiments were applied in GBC cell lines to explore the oncogenic roles of ERBB2/ERBB3 hotspot mutations, their correlation with PD-L1 expression and the underlying mechanisms. ERBB inhibitors and a PD-L1 blocker were used to evaluate the anticancer activities in co-culture systems in vitro and in vivo. RESULTS: WES identified ERBB2 and ERBB3 mutations at a frequency of 7%-8% in the expanded cohort, and patients with ERBB2/ERBB3 mutations exhibited poorer prognoses. A set of in vitro and in vivo experiments revealed increased proliferation/migration on ERBB2/ERBB3 mutation. Ectopic expression of ERBB2/ERBB3 mutants upregulated PD-L1 expression in GBC cells, effectively suppressed normal T-cell-mediated cytotoxicity in vitro through activation of the PI3K/Akt signalling pathway and contributed to the growth and progression of GBC in vivo. Treatment with an ERBB2/ERBB3 inhibitor or a PD-L1 monoclonal antibody reversed these immunosuppressive effects, and combined therapy revealed promising therapeutic activities. CONCLUSIONS: ERBB2/ERBB3 mutations may serve as useful biomarkers in identifying patients who are sensitive to ERBB2/ERBB3 inhibitors and PD-L1 monoclonal antibody treatment. TRIAL REGISTRATION NUMBER: NCT02442414;Pre-results.


Subject(s)
B7-H1 Antigen/genetics , Exome Sequencing , Gallbladder Neoplasms/genetics , Gallbladder Neoplasms/immunology , Receptor, ErbB-2/genetics , Antibodies, Monoclonal/pharmacology , B7-H1 Antigen/drug effects , Cell Line, Tumor , DNA Mutational Analysis , Female , Genomics , Humans , Male , Molecular Targeted Therapy , Risk Assessment , Sensitivity and Specificity , Signal Transduction/drug effects
12.
Environ Sci Technol ; 51(19): 11476-11483, 2017 Oct 03.
Article in English | MEDLINE | ID: mdl-28886242

ABSTRACT

Highly selective molecularly imprinted poly[acrylamide-co-(ethylene glycol dimethacrylate)] polymer particles (MIPs) for CO2 capture were synthesized by suspension polymerization via oil-in-oil emulsion. Creation of CO2-philic, amide-decorated cavities in the polymer matrix led to a high affinity to CO2. At 0.15 bar CO2 partial pressure, the CO2/N2 selectivity was 49 (corresponding to 91% purity of the gas stream after regeneration), and reached 97 at ultralow CO2 partial pressures. The imprinted polymers showed considerably higher CO2 uptakes compared to their nonimprinted counterparts, and the maximum equilibrium CO2 capture capacity of 1.1 mmol g-1 was achieved at 273 K. The heat of adsorption was below 32 kJ mol-1 and the temperature of onset of intense thermal degradation was 351-376 °C. An increase in monomer-to-cross-linker molar ratio in the dispersed phase up to 1:2.5 led to a higher affinity toward CO2 due to higher density of selective amide groups in the polymer network. MIPs are a promising option for industrial packed and fluidized bed CO2 capture systems due to large particles with a diameter up to 1200 µm and irregular oblong shapes formed due to arrested coalescence during polymerization, occurring as a result of internal elasticity of the partially polymerized semisolid drops.


Subject(s)
Carbon Dioxide , Molecular Imprinting , Polymerization , Adsorption , Polymers , Pressure
SELECTION OF CITATIONS
SEARCH DETAIL
...