Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Chemosphere ; 363: 142905, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39038710

ABSTRACT

The robustness of the anaerobic ammonia oxidation (anammox) process in treating wastewater with high concentrations of humic acids (HAs), including landfill leachate and sludge anaerobic digestion liquid, has been paid great attention. This study revealed that the anammox sludge granule size of 1.0-2.0 mm could be robust under the HA exposure with high concentrations. The total nitrogen removal efficiency (NRE) was 96.2% at the HA concentration of 20-100 mg/L, while the NRE was 88.5% at the HA concentration of 500 mg/L, with reduced by 7.7%. The increased extracellular polymeric substances (EPS) content which was stimulated by the HA exposure favored the formation of large granules (1.0-2.0 mm) by enveloping medium and micro granules (0.2-1.0 mm). The abundance of anammox bacteria Candidatus Brocadia was found to be higher (14.2%) in large anammox granules sized 1.0-2.0 mm, suggesting a potentially high anammox activity. However, the abundance of denitrifiers Denitratisoma increased by 4.3% in ultra-large anammox granules sized >2.0 mm, which could be attributed to the high EPS content for heterotrophic denitrifiers metabolism as organic matter. The feedback mechanism of the anammox community for maintaining the ecological function under the HA exposure resulted in a closely related microbial community, with positive and negative correlations in the ecological network increased by 64.3%. This study revealed that the HA exposure of the anammox system resulted in the anammox granules of 1.0-2.0 mm size being the dominant granules with robust nitrogen removal, providing significant guidance for the optimization of anammox granules for an efficient treatment of HA-containing wastewater in anammox applications.

2.
Br J Haematol ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38706448

ABSTRACT

Large amounts of azurophilic granules are considered to be a morphological feature of acute promyelocytic leukaemia (APL). However, a small percentage of acute myeloid leukaemia (AML) patients also have a large number of azurophilic granules. A large cohort of 3210 AML patients in our hospital was screened to identify AML patients who had a large number of azurophilic granules. The clinical parameters of these patients were collected and compared with typical AML patients (control Group 1) and APL patients (control Group 2). The incidence of AML with a large number of azurophilic granules was 1.26%. The fibrinogen and D-dimer levels of patients in the study group were more similar to those of patients in control Group 2, as was the incidence of bleeding events. Additionally, patients in the study group had higher FLT3-ITD and NPM1 mutation rates than patients in control Group 1. Finally, patients in the study group had a higher 30-day mortality rate than those in control Group 2 (24.2% vs. 9.09%) and showed a higher 30-day mortality trend than those in control Group 1. Therefore, we should pay more attention to the prevention of coagulation dysfunction and bleeding events for these patients.

3.
Plants (Basel) ; 13(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38592755

ABSTRACT

Tetranychus urticae, a prominent pest mite in strawberry and vegetable cultivation in China, has developed escalating resistance due to extensive chemical pesticide application. Consequently, there is an urgent need to identify safe and efficacious methods to reduce resistance development. In this study, 38 commercially available plant essential oils (EOs) were screened for their acaricidal potential and ability to inhibit oviposition. The findings revealed that 13 EOs exhibited notable acaricidal activity, with lemon EO demonstrating the highest toxicity, followed by sage, patchouli, frankincense, lemongrass, palmarosa, and oregano EOs. In addition, 18 EOs displayed significant inhibitory effects on oviposition, with lemon EO exhibiting the highest inhibition rate (99.15%) and inhibition index (0.98). Subsequently, sage, frankincense, clove, lemongrass, oregano, patchouli, myrrh, black pepper, palmarosa, and geranium EOs also showed inhibition rates exceeding 50%. Despite black pepper, clove, myrrh, and oregano EOs demonstrating relatively low toxicity against T. urticae, they exhibited heightened efficacy in inhibiting oviposition and suppressing population expansion. This study conducted a comparative assessment of the acaricidal and oviposition inhibition activities of EOs and their principal constituents, thus providing a theoretical basis for the development of botanical acaricides against T. urticae.

4.
Environ Sci Technol ; 58(14): 6284-6295, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38488464

ABSTRACT

The anammox dynamic membrane bioreactor (DMBR) is promising in applications with enhanced anammox biomass enrichment and fouling alleviation. However, the metabolic mechanism underlying the functional features of anammox sludge and the biofilm membrane is still obscure. We investigated the metabolic networks of anammox sludge and membrane biofilm in the DMBR. The cooperation between anammox and dissimilatory nitrate reduction to ammonium processes favored the robust anammox process in the DMBR. The rapid bacterial growth occurred in the DMBR sludge with 1.33 times higher biomass yield compared to the MBR sludge, linked to the higher activities of lipid metabolism, nucleotide metabolism, and B vitamin-related metabolism of the DMBR sludge. The metabolism of the DMBR biofilm microbial community benefited the fouling alleviation that the abundant fermentative bacteria and their cooperation with the anammox sludge microbial community promoted organics degradation. The intensified degradation of foulants by the DMBR biofilm community was further evidenced by the active carbohydrate metabolism and the upregulated vitamin B intermediates in the biofilms of the DMBR. Our findings provide insights into key metabolic mechanisms for enhanced biomass enrichment and fouling control of the anammox DMBR, guiding manipulations and applications for overcoming anammox biomass loss in the treatment of wastewater under detrimental environmental conditions.


Subject(s)
Anaerobic Ammonia Oxidation , Sewage , Sewage/microbiology , Biomass , Bioreactors/microbiology , Metabolome , Nitrogen/metabolism , Oxidation-Reduction
6.
Gene ; 897: 148086, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38104952

ABSTRACT

Pigmentation is frequently observed in the molluscan shells, whereas the molecular regulation about these shell pigments formation is not clear. The microphthalmia-associated transcription factor (Mitf) is an important transactivator in melanin synthesis in vertebrates. Here, the Mitf containing a highly conserved basic helix-loop-helixleucine zipper (bHLH-LZ) domain was identified in an economically important marine bivalve Pacific oyster Crassostrea gigas. The Mitf was found to widespread tissue distribution and the expression was higher in the marginal mantle than in the central mantle. Particularly, the expression level of Mitf was high in black shell color oysters compared with white shell oysters. After injecting siRNA, the expression of Mitf decreased significantly, and the efficiency of RNA interference reached 53%. Besides, knockdown Mitf obviously decreased expression of tyrosinase family genes and tyrosinase activity of mantles, indicating a potential regulatory relationship between Mitf and Tyr or Typs. Simultaneously, there was a sharply reduce in the number of the melanosomes in the outer fold of mantle by silencing of Mitf. Luciferase assays in cell culture further verified that Mitf was involved in transcriptional regulation of Typ-2 and Typ-3 genes through binding to their specific promoter regions. These data argue that Mitf is involved in shell pigmentation through activating tyrosinase-mediated melanin synthesis in C. gigas.


Subject(s)
Crassostrea , Monophenol Monooxygenase , Pigmentation , Animals , Crassostrea/genetics , Crassostrea/metabolism , Melanins , Microphthalmia-Associated Transcription Factor/genetics , Monophenol Monooxygenase/genetics , Pigmentation/genetics
7.
Medicine (Baltimore) ; 102(48): e36315, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38050296

ABSTRACT

Immune and inflammatory responses play an important role in tumorigenesis and metastasis. Inflammation is an important component of the tumor microenvironment, and the changes in inflammatory cells may affect the occurrence and development of tumors. Complete blood count at the time of diagnosis and treatment can reflect the inflammatory status within the tumor. Studies have shown that the number of certain inflammatory cells in peripheral blood and their ratios are important prognostic factors for many malignancies, including neutrophil, lymphocyte, monocyte, and platelet counts, as well as neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, lymphocyte-to-monocyte ratio, systemic immune-inflammation index, systemic inflammation response index and pan-immune-inflammation-value. The value of peripheral blood inflammation indexes in predicting the efficacy and prognosis of breast cancer neoadjuvant therapy is worth recognizing. This review details the application of peripheral blood inflammation indexes in the evaluation of efficacy and prediction of prognosis in neoadjuvant therapy for breast cancer, aiming to provide a more comprehensive reference for the comprehensive diagnosis and treatment of breast cancer.


Subject(s)
Breast Neoplasms , Lymphocytes , Humans , Female , Lymphocytes/pathology , Blood Cell Count , Prognosis , Neutrophils/pathology , Blood Platelets/pathology , Inflammation , Breast Neoplasms/therapy , Breast Neoplasms/pathology , Retrospective Studies , Tumor Microenvironment
8.
Environ Int ; 180: 108203, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37717521

ABSTRACT

Fleet electrification is one of the most promising strategies to mitigate carbon emissions and improve air quality. This study provides a comprehensive analysis of the currently unclear CO2 mitigation and human health benefits from electric vehicle (EV) adoption and energy decarbonization in the Yangtze River Delta (YRD) region by integrating fleet modeling, emission projection, air quality modeling and health risk assessment. Based on future socioeconomic trajectories, we project that the total vehicle stock in the YRD region will peak at 107-117 million around 2045-2050. The transition to EVs combined with largely renewable energy in the YRD region can potentially reduce CO2 emissions by 870 Tg in 2060 and brings along substantial health co-benefits with âˆ¼360 avoided premature deaths per million from reduced PM2.5 and O3 concentrations. This study further explores the NO2-attributable burden from road transportation and reveals that fleet electrification could yield greater NO2-attributable health benefits than those from reduced PM2.5 and O3, especially in traffic-dense urban areas. Those findings indicate that China's near-term energy development plans (35% renewable energy) have created the conditions for large-scale EV adoption. Our results imply that the benefits of EVs exhibit substantial spatial heterogeneity, underscoring the importance of region-specific EV incentive policies, and hint that policymakers should prioritize densely populated megacities to maximize the potential for public health gains.

9.
Cancer Cell ; 41(11): 1927-1944.e9, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37738973

ABSTRACT

Although polymorphic microbiomes have emerged as hallmarks of cancer, far less is known about the role of the intratumor mycobiome as living microorganisms in cancer progression. Here, using fungi-enriched DNA extraction and deep shotgun metagenomic sequencing, we have identified enriched tumor-resident Aspergillus sydowii in patients with lung adenocarcinoma (LUAD). By three different syngeneic lung cancer mice models, we find that A. sydowii promotes lung tumor progression via IL-1ß-mediated expansion and activation of MDSCs, resulting in suppressed activity of cytotoxic T lymphocyte cells and accumulation of PD-1+ CD8+ T cells. This is mediated by IL-1ß secretion via ß-glucan/Dectin-1/CARD9 pathway. Analysis of human samples confirms that enriched A. sydowii is associated with immunosuppression and poor patient outcome. Our findings suggest that intratumor mycobiome, albeit at low biomass, promotes lung cancer progression and could be targeted at the strain level to improve patients with LUAD outcome.


Subject(s)
Lung Neoplasms , Mycobiome , Myeloid-Derived Suppressor Cells , Humans , Animals , Mice , Lung Neoplasms/genetics , CD8-Positive T-Lymphocytes , Lung
10.
Pediatr Blood Cancer ; : e30453, 2023 May 29.
Article in English | MEDLINE | ID: mdl-37248172

ABSTRACT

INTRODUCTION: Pathophysiologic pathways of sickle cell disease (SCD) and air pollution involve inflammation, oxidative stress, and endothelial damage. It is therefore plausible that children with SCD are especially prone to air pollution's harmful effects. METHODS: Patient data were collected from a single-center, urban/peri-urban cohort of children with confirmed SCD. Daily ambient concentrations of particulate matter (PM2.5 ) were collected via satellite-derived remote-sensing technology, and carbon monoxide (CO), nitrogen dioxide (NO2 ), and ozone from local monitoring stations. We used multivariable regression to quantify associations of pollutant levels and daily counts of emergency department (ED) visits, accounting for weather and time trends. For comparison, we quantified the associations of pollutant levels with daily all-patient (non-SCD) ED visits to our center. RESULTS: From 2010 to 2018, there were 17,731 ED visits by 1740 children with SCD (64.8% HbSS/HbSß0 ). Vaso-occlusive events (57.8%), respiratory illness (17.1%), and fever (16.1%) were the most common visit diagnoses. Higher 3-day (lags 0-2) rolling mean PM2.5 and CO levels were associated with daily ED visits among those with SCD (PM2.5 incident rate ratio [IRR] 1.051 [95% confidence interval: 1.010-1.094] per 9.4 µg/m3 increase; CO 1.088 [1.045-1.132] per 0.5 ppm). NO2 showed positive associations in secondary analyses; ozone levels were not associated with ED visits. The comparison, all-patient ED visit analyses showed lower IRR for all pollutants. CONCLUSIONS: Our results suggest short-term air pollution levels as triggers for SCD events and that children with SCD may be more vulnerable to air pollution than those without SCD. Targeted pollution-avoidance strategies could have significant clinical benefits in this population.

11.
J Hematol Oncol ; 16(1): 27, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36945063

ABSTRACT

Acute myeloid leukemia (AML) is a deadly hematological malignancy. Cellular morphology detection of bone marrow smears based on the French-American-British (FAB) classification system remains an essential criterion in the diagnosis of hematological malignancies. However, the diagnosis and discrimination of distinct FAB subtypes of AML obtained from bone marrow smear images are tedious and time-consuming. In addition, there is considerable variation within and among pathologists, particularly in rural areas, where pathologists may not have relevant expertise. Here, we established a comprehensive database encompassing 8245 bone marrow smear images from 651 patients based on a retrospective dual-center study between 2010 and 2021 for the purpose of training and testing. Furthermore, we developed AMLnet, a deep-learning pipeline based on bone marrow smear images, that can discriminate not only between AML patients and healthy individuals but also accurately identify various AML subtypes. AMLnet achieved an AUC of 0.885 at the image level and 0.921 at the patient level in distinguishing nine AML subtypes on the test dataset. Furthermore, AMLnet outperformed junior human experts and was comparable to senior experts on the test dataset at the patient level. Finally, we provided an interactive demo website to visualize the saliency maps and the results of AMLnet for aiding pathologists' diagnosis. Collectively, AMLnet has the potential to serve as a fast prescreening and decision support tool for cytomorphological pathologists, especially in areas where pathologists are overburdened by medical demands as well as in rural areas where medical resources are scarce.


Subject(s)
Deep Learning , Hematologic Neoplasms , Leukemia, Myeloid, Acute , Humans , Bone Marrow/pathology , Retrospective Studies , Diagnosis, Differential , Leukemia, Myeloid, Acute/pathology , Hematologic Neoplasms/pathology
12.
Front Immunol ; 14: 1099468, 2023.
Article in English | MEDLINE | ID: mdl-36825017

ABSTRACT

Immunosuppressed patients can contract parvovirus B19, and some may experience hemophagocytic lymphohistiocytosis (HLH). Herein, we describe the first report of hemophagocytic lymphohistiocytosis in a heart-lung transplant patient with concomitant parvovirus B19 infection. The patient was treated with intravenous immune globulin (IVIG) and the features of HLH were remission. This instance emphasizes the significance of parvovirus B19 monitoring in transplant patients with anemia; if HLH complicates the situation, IVIG may be an adequate remedy. Finally, a summary of the development in diagnosing and managing parvovirus B19 infection complicated by HLH is provided.


Subject(s)
Erythema Infectiosum , Heart-Lung Transplantation , Lymphohistiocytosis, Hemophagocytic , Parvoviridae Infections , Parvovirus B19, Human , Humans , Lymphohistiocytosis, Hemophagocytic/diagnosis , Lymphohistiocytosis, Hemophagocytic/drug therapy , Erythema Infectiosum/complications , Immunoglobulins, Intravenous/therapeutic use , Heart-Lung Transplantation/adverse effects , Parvoviridae Infections/complications , Parvoviridae Infections/diagnosis
13.
Gene ; 840: 146742, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-35868415

ABSTRACT

Color polymorphism in Mollusca is of great interest for consumer preference. Although the heritability of shell color variation has been conducted by experimental crossing, little is known about molecular basis involved in these patterns. Tyrosinase-like proteins are important enzymes which are members of the type-3 copper protein superfamily. In this research, two tyrosinase-like protein genes including CgTyp-1 and CgTyp-3 were identified in the Pacific oyster Crassostrea gigas. Tissue expression analysis showed that CgTyp-1 and CgTyp-3 were dominantly expressed in the mantle. Particularly, they were expressed significantly higher in the edge mantle than that in the central mantle whether on the left or right mantles. Additionally, expressions of CgTyp-1 and CgTyp-3 were mainly found in the black shell color oysters, with relative lower levels in the white shell color oysters. In situ hybridization showed that positive signals for CgTyp-1 and CgTyp-3 were both detected within the outer epithelium of the outer fold either in the black or white shell color oysters. After interference, the expression levels of CgTyp-1 and CgTyp-3 mRNA were significantly attenuated, and the efficiency of RNAi reached 84.72% and 71.58%, respectively. Besides, knockdown CgTyp-1 or CgTyp-3, obviously decreased the tyrosinase activity of mantles. Furthermore, the number of the melanosomes within epithelium of the outer fold was sharply reduced by silencing of each Typ. These findings argue that CgTyp-1 and CgTyp-3 may be involved in the melanin synthesis, which lends insight into regulation mechanism of shell pigmentation in C. gigas.


Subject(s)
Crassostrea , Animal Shells/metabolism , Animals , Crassostrea/genetics , Crassostrea/metabolism , Melanins/genetics , Melanins/metabolism , Monophenol Monooxygenase/genetics , Monophenol Monooxygenase/metabolism , Pigmentation/genetics
14.
Mar Biotechnol (NY) ; 23(5): 777-789, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34490547

ABSTRACT

The widely recognized color polymorphisms of molluscan shell have been appreciated for hundreds of years by collectors and scientists, while molecular mechanisms underlying shell pigmentation are still poorly understood. Tyrosinase is a key rate-limiting enzyme for the biosynthesis of melanin. Here, we performed an extensive multi-omics data mining and identified two tyrosinase genes, including tyrosinase and tyrosinase-like protein 2 (Tyr and Typ-2 respectively), in the Pacific oyster Crassostrea gigas, and investigated the expression patterns of tyrosinase during adults and embryogenesis in black and white shell color C. gigas. Tissue expression analysis showed that two tyrosinase genes were both specifically expressed in the mantle, and the expression levels of Tyr and Typ-2 in the edge mantle were significantly higher than that in the central mantle. Besides, Tyr and Typ-2 genes were black shell-specific compared with white shell oysters. In situ hybridization showed that strong signals for Tyr were detected in the inner surface of the outer fold, whereas positive signals for Typ-2 were mainly localized in the outer surface of the outer fold. In the embryos and larvae, the high expression of Tyr mRNA was detected in eyed-larvae, while Typ-2 mRNA was mainly expressed at the trochophore and early D-veliger. Furthermore, the tyrosinase activity in the edge mantle was significantly higher than that in the central mantle. These findings indicated that Tyr gene may be involved in shell pigmentation, and Typ-2 is more likely to play critical roles not only in the formation of shell prismatic layer but also in shell pigmentation. In particular, Typ-2 gene was likely to involve in the initial non-calcified shell of trochophores. The work provides valuable information for the molecular mechanism study of shell formation and pigmentation in C. gigas.


Subject(s)
Animal Shells/metabolism , Crassostrea/metabolism , Monophenol Monooxygenase/metabolism , Pigmentation/genetics , Animals , Crassostrea/genetics , Crassostrea/growth & development , Monophenol Monooxygenase/genetics
15.
Front Immunol ; 12: 810677, 2021.
Article in English | MEDLINE | ID: mdl-35095902

ABSTRACT

Hemophagocytic lymphocytosis (HLH) is a rare disease caused by inborn errors of immunity (IEI), secondary to infection, lymphoma or autoimmune disorders, but we often overlook the fact that HLH can be secondary to inborn errors of metabolism (IEM). Here, we describe a patient who was diagnosed with glutaric aciduria type IIC complicated by features suggestive of possible HLH. The diagnosis of glutaric aciduria type IIC, a IEM, was confirmed by whole exome sequencing. The patient was treated with coenzyme Q10 and riboflavin which effectively improved her liver function. During treatment, the patient developed severe anemia and thrombocytopenia. Persistent fever, splenomegaly, cytopenias, increased ferritin, hypertriglyceridemia, hypofibrinogenemia, and hemophagocytosis in the bone marrow pointed to the diagnosis of HLH; however, the patient eventually died of gastrointestinal bleeding. After other potential causes were ruled out, the patient was diagnosed with glutaric aciduria type IIC complicated by features suggestive of possible HLH. When cytopenias occurs in IEM patients, HLH is a possible complication that cannot be ignored. This case suggests a possible relationship between IEM and risk for immune dysregulation.


Subject(s)
Lymphohistiocytosis, Hemophagocytic/complications , Lymphohistiocytosis, Hemophagocytic/diagnosis , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/complications , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/diagnosis , Adult , Biomarkers , Disease Susceptibility , Electron-Transferring Flavoproteins/genetics , Erythrocyte Indices , Female , Genetic Predisposition to Disease , Humans , Iron-Sulfur Proteins/genetics , Lymphohistiocytosis, Hemophagocytic/etiology , Magnetic Resonance Imaging , Oxidoreductases Acting on CH-NH Group Donors/genetics , Phenotype , Tomography, X-Ray Computed
16.
Water Res ; 188: 116554, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33128978

ABSTRACT

Novel control strategies for membrane biofouling with eco-friendly photocatalytic technology are critically needed in practical operation of membrane bioreactors (MBRs). In this study, a metal-organic frameworks (MOF) based photocatalytic membrane was firstly applied in an anammox MBR for a long-term biofouling control, where bacteria were inactivated and foulants were degraded simultaneously, with environmentally friendly and renewable visible light energy. By physicochemical characterization, the synthesized photocatalyst of CdS/MIL-101 showed superior visible-light photocatalytic ability, and the 1 wt% CdS/MIL-101 modified membrane C2 showed enhanced hydrophilicity and water permeability compared with the pristine membrane C0. In the long-term operation of anammox MBRs under waterproof lights irradiation, the filtration cycles of C2 (25-26 d) were obviously extended compared with C0 (10-14 d), while their average total nitrogen removal efficiencies were comparable up to 84%, indicating an excellent biofouling alleviation effect by using C2 with a satisfactory nitrogen removal performance maintained. By analysis of the biofilm on the fouled membranes, the organic foulants (especially extracellular polymeric substances) were degraded, and the live bacteria were inactivated effectively by the photocatalytic reactions of CdS/MIL-101 on C2. In the antimicrobial tests against model bacteria, C2 exhibited remarkable antimicrobial effect against both Gram-negative and Gram-positive bacteria with visible light irradiation by destruction of cell integrity with the inhibition rate of 92% for Escherichia coli and 95% for Staphylococcus aureus, respectively. In the model foulants (bovine serum albumin, sodium alginate, and humic acid) filtration tests, C2 showed higher antifouling capabilities, lower flux declining rates, and higher foulants rejection rates under visible light irradiation compared with C0. The reactive species of ·OH, e- and h+ generated on C2 were verified to play the predominant role in the anti-biofouling processes by simultaneous bacteria inactivation and foulants degradation. The findings offer a novel insight into the biofouling controlling in MBRs by simultaneous bacteria inactivation and foulants degradation with an eco-friendly method.


Subject(s)
Biofouling , Metal-Organic Frameworks , Biofouling/prevention & control , Bioreactors , Light , Membranes , Membranes, Artificial , Polyvinyls
17.
Front Immunol ; 11: 1787, 2020.
Article in English | MEDLINE | ID: mdl-32973749

ABSTRACT

Chimeric antigen receptor (CAR) T cells represent a potentially curative therapy for patients with advanced hematological cancers; however, uncertainties surround the cell-intrinsic fitness as well as the exhaustion that restrict the capacity of CAR-T. Decitabine (DAC), a DNA demethylating agent, has been demonstrated to reverse exhaustion-associated DNA-methylation programs and to improve T cell responses against tumors. Here we show that DAC significantly enhances antileukemia functions of CD123 CAR-T cells in vitro and in vivo. Additionally, it inhibits the expression of DMNT3a and DNMT1. Using the Illumina Methylation EPIC BeadChip (850 K), we identified differentially methylated regions, most of which undergo hypomethylated changes. Transcriptomic profiling revealed that CD123 CAR-T cells treated with DAC were enriched in genes associated with naive, early memory T cells, as well as non-exhausted T cells. DAC treatment also results in upregulation of immune synapse-related genes. Finally, our data further suggest that DAC works through the regulation of cellular differentiation characterized by naive and memory phenotypes. Taken together, these findings demonstrate that DAC improves the anti-leukemia properties of CD123-directed CAR-T cells, and provides a basis for rational combinatorial CAR-T-based immunotherapy for patients with acute myeloid leukemia (AML).


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Combined Modality Therapy/methods , Decitabine/pharmacology , Immunotherapy, Adoptive/methods , Leukemia, Myeloid, Acute/therapy , Animals , Cell Line, Tumor , Cellular Reprogramming/drug effects , DNA Methylation/drug effects , Epigenesis, Genetic , Female , Humans , Interleukin-3 Receptor alpha Subunit , Mice , Mice, Inbred NOD , Receptors, Chimeric Antigen , Xenograft Model Antitumor Assays
18.
Environ Sci Pollut Res Int ; 27(32): 40041-40053, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32654034

ABSTRACT

Fouling behavior of the novel anaerobic ammonium oxidation (anammox) self-forming dynamic membrane bioreactor (SFDMBR) was elucidated, which is using nylon mesh as the filter with controlled fouling and successful anammox process. Properties of anammox sludge and foulants in the anammox SFDMBR and MBR (using PVDF microfiltration membrane) were compared to analyze the alleviated fouling in the SFDMBR, of which transmembrane pressure could be kept below 10 kPa for 50 days in one filtration cycle of 82 days with flux of 12 L m-2 h-1. Colorimetrical determination and excitation emission matrices-parallel factor (EEM-PARAFAC) analysis of the foulants showed that humic acid content in foulants on nylon mesh was obviously lower than that on PVDF membrane. Considering that the small-sized and flexible humic acids prefer to plug into membrane pores, the alleviated irreversible fouling in the SFDMBR could be attributed to the less microbial humic acid content of foulants (8.8 ± 1.0%) compared with the MBR (20.7 ± 2.9%). The adequate efflux of humic-like substances in the operation with nylon mesh was speculated to be the main mechanism of fouling control in the SFDMBR. These findings highlighted the potential of anammox SFDMBR in practical applications, because of the high humic acid contents in real ammonium-laden wastewater. Our study highlights the important role of humic acids in fouling behavior of the novel anammox SFDMBR to provide guidance for fouling control strategies. Graphical abstract.


Subject(s)
Bioreactors , Membranes, Artificial , Filtration , Sewage , Wastewater
19.
Environ Sci Technol ; 53(22): 13158-13167, 2019 Nov 19.
Article in English | MEDLINE | ID: mdl-31577136

ABSTRACT

A novel anammox self-forming dynamic membrane bioreactor (SFDMBR) was proposed to achieve an efficient anammox process with high biomass retention and cost-effective operation. The cake layer formed on nylon mesh (pore size, 20-25 µm) was referred to as a dynamic membrane (DM). The high permeability of the DM layer contributed to low transmembrane pressure (TMP), which kept below 10 kPa for 50 days in one filtration cycle of 82 days. Compared to the high TMP (mainly > 20 kPa) in the MBR using polyvinylidene fluoride (PVDF) microfiltration membrane, energy can be significantly conserved in the SFDMBR. Besides, the mature DM layer achieved efficient biomass retention comparable to that of PVDF membrane, which favored anammox bacteria enrichment. Concomitantly, an appropriate microenvironment for autotrophic anammox bacterial growth with well-controlled extracellular polymeric substances (EPS) concentration (33.22 mg·g-1 VSS) was achieved in SFDMBR. According to specific filtration resistance (SFR) analysis, reducing the EPS concentration in the bulk sludge improves sludge filterability and alleviate fouling, which was achieved in the SFDMBR system with a low SFR of 1.47 × 1012 m-1·kg-1. Our results show that the cost-effective operations and technical merits make anammox SFDMBRs promising for practical applications.


Subject(s)
Bioreactors , Membranes, Artificial , Biomass , Filtration , Sewage
20.
Water Res ; 161: 610-620, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31254887

ABSTRACT

Antibiotic resistance genes (ARGs) including extracellular ARGs (eARGs) and intracellular ARGs (iARGs), are recognized as emerging environmental contaminants. Despite extensive efforts to profile ARGs in their "hotspots" wastewater treatment plants (WWTPs), the contribution of eARGs to antibiotic resistance spread remains unclear. Here, we applied metagenomic sequencing to investigate the distribution, mobility and microbial hosts of eARGs in activated sludge from five WWTPs. The total relative abundance eARGs ranged from 9.5 × 10-6 to 1.3 × 10-4, mainly encompassing elfamycin, dual drug, and aminoglycoside resistance genes. Multiple eARGs (e.g., EF-Tu, ropB, and rpsL mutants) were shared among the five WWTPs, and some clustered in the same genetic element (e.g., EF-Tu-rpsJ). eARGs were found to frequently co-localize with the eMGEs (e.g., sul1-3'CS-TnAs3, sul2-intI1-ISVsa3, and tetX-p63039), which may facilitate the mobilization of eARGs. Most eARGs likely originated from the genera Mycobacterium (6.7%), Nitrosomonas (5.3%), Steroidobacter (5.3%), Nitrospira (5.2%) and Pseudomonas (5.1%). No significant difference in the diversity, abundance, and mobility was observed between eARGs and iARGs. The host composition of eARGs and iARGs from municipal WWTPs are consistently dominated by Nitrosomonas, Steroidobacter, Nitrospira and Pseudomonas, while some differentially enriched genera (especially Nitrospira) in the hosts of iARGs compared with those of eARGs from the swine WWTP were identified. Our findings corroborate the mobile eARGs reservoir in WWTPs, thereby laying foundation for mitigating widespread antibiotic resistance.


Subject(s)
Anti-Bacterial Agents , Sewage , Animals , Drug Resistance, Microbial , Genes, Bacterial , Metagenome , Swine , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...