Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.008
Filter
1.
Crit Rev Oncol Hematol ; 200: 104402, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38848881

ABSTRACT

BACKGROUND: The use of adaptive designs in cancer trials has considerably increased worldwide in recent years, along with the release of various guidelines for their application. This systematic review aims to comprehensively summarize the key methodological and executive features of adaptive designs in cancer clinical trials. METHODS: A comprehensive search from PubMed, EMBASE, and the Cochrane Central Register of Controlled Trials was conducted to screen eligible clinical trials that employed adaptive designs and were conducted in cancer patients. The methodological and executive characteristics of adaptive designs were the main measurements extracted. Descriptive analyses, primarily consisting of frequency and percentage, were employed to analyzed and reported the data. RESULTS: A total of 180 cancer clinical trials with adaptive designs were identified. The first three most common type of adaptive design was the group sequential design (n=114, 63.3 %), adaptive dose-finding design (n=22, 12.2 %), and adaptive platform design (n=16, 8.9 %). The results showed that 4.4 % (n=8) of trials conducted post hoc modifications, and around 29.4 % (n=53) did not provide the methods for controlling type I errors. Among phase II or above trials, 79.9 % (112/140) applied the surrogate endpoint as the primary outcome in these trials. Importantly, 27.2 % (49/180) of trials did not report clear information on the independent data monitoring committee (iDMC), and 13.3 % (n=24) without clear information on interim analyses. Interim analyses suggested 34.4 % (62/180) of trials being stopped for futility, 10.6 % (n=19) for efficacy, and 2.2 % (n=4) for safety concerns in the early stage. CONCLUSIONS: This study emphasizes adaptive designs in cancer trials face significant challenges in their design or strict implementation according to protocol, which might significantly compromise the validity and integrity of trials. It is thus important for researchers, sponsors, and policymakers to actively oversee and guide their application.

2.
Article in English | MEDLINE | ID: mdl-38836732

ABSTRACT

Objective: This study aims to analyze the factors influencing the efficacy of budesonide (BUD) combined with N-acetylcysteine (NAC) treatment in children with Mycoplasma pneumoniae (MP) infection through Lasso-Logistic analysis, construct a Nomogram predictive model, and provide personalized treatment plans for clinicians. Additionally, it aims to fill the knowledge gap regarding the treatment of MP-infected children with BUD combined with NAC. Methods: We retrospectively analyzed clinical data from 96 children treated with BUD and NAC for MP infection at our hospital from January 2022 to May 2023. Treatment outcomes were categorized as good or poor. Logistic regression and Lasso-Logistic analysis were used to identify independent factors influencing outcomes and construct a predictive Nomogram model, which was validated through ROC curve analysis. Results: Logistic regression identified prolonged fever (≥7 days), high fever, and elevated levels of TNF-α, IL-6, and CRP as independent risk factors for poor outcomes. The Nomogram model, based on these factors, demonstrated excellent predictive accuracy with a C-index of 0.992 and AUC values of 0.987 and 0.948 in the modeling and validation cohorts, respectively. Conclusion: The developed Nomogram model provides clinicians with a reliable tool to predict poor treatment outcomes in children with MP infection treated with BUD and NAC, supporting more personalized and effective treatment plans.

3.
Cell Prolif ; : e13686, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831624

ABSTRACT

The in-depth mechanisms of microRNA regulation of premature ovarian failure (POF) remain unclear. Crispr-cas9 technology was used to construct transgenic mice. The qPCR and Western blot was used to detect the expression level of genes. H&E staining were used to detect ovarian pathological phenotypes. We found that the expression levels of microRNA-3061 were significantly higher in ovarian granulosa cells (OGCs) of POF mouse models than in controls. The miR-3061+/-/AMH-Cre+/- transgenic mice manifested symptoms of POF. RNA-Seq and luciferase reporter assay confirmed that the PAX7 was one of the target genes negatively regulated by microRNA-3061 (miR-3061-5p). Moreover, PAX7 mediated the expression of non-canonical Wnt/Ca2+ signalling pathway by binding to the motifs of promoters to stimulate the transcriptional activation of Wnt5a and CamK2a. In contrast, specific knock-in of microRNA-3061 in OGCs significantly downregulated the expression levels of PAX7 and inhibited the expression of downstream Wnt/Ca2+ signalling pathway. We also discerned a correlation between the expression levels of mRNAs of the Wnt/Ca2+ signalling pathway and the levels of E2 and FSH in POF patients by examining gene expression in the follicular fluid-derived exosomes of women. We confirmed that overexpression of microRNA-3061 induced proliferative inhibition of OGCs and ultimately induced POF in mice by suppressing the transcription factor PAX7 and downregulating expression levels of its downstream Wnt/Ca2+ signalling pathway genes.

5.
J Asian Nat Prod Res ; : 1-9, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853517

ABSTRACT

Investigation of the fruits of Rhododendron molle G. Don led to the isolation of three new grayanane-type diterpenoids, rhodomolleins LIV-LVI (1-3). The structures and absolute configurations of new compounds were fully elucidated by spectroscopic analysis and single-crystal X-ray diffraction, including HRESIMS, 1 D and 2 D NMR data. Compounds 1-3 were evaluated for analgesic activities utilizing an acetic acid-induced writhing test in mice. Compound 1 showed a significant antinociceptive effect with writhe inhibition rates of 72.9% and 100% at doses of 6 mg/kg and 20 mg/kg in mice, respectively. The binding mode of 1 to N-ethylmaleimide-sensitive factor (NSF, PDB: 6IP2) was explored by molecular docking, indicating the presence of hydrogen bond interactions which account for its analgesic activity.

6.
Geriatr Nurs ; 58: 238-246, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38838406

ABSTRACT

OBJECTIVE: To evaluate the effectiveness of home-based cardiac telerehabilitation based on wearable electrocardiogram or heart rate monitoring devices in patients with heart disease. METHODS: We searched eight electronic databases under the guidance of Cochrane Handbook and PRISMA recommendations. RESULTS: The meta-analysis included data from 14 articles (15 RCTs) representing 1314 participants. A significant improvement in left ventricular ejection fraction [MD = 2.12, 95 % CI (1.21, 3.04), P < 0.001], 6-minute walk distance [MD = 40.00, 95 % CI (21.72, 58.29), P < 0.001] and peak oxygen intake [MD = 2.24, 95 % CI (1.38, 3.10), P < 0.001] were observed in the home-based cardiac telerehabilitation group. But it had no difference in anxiety [SMD = -0.83, 95 % CI (-1.65, -0.02), P = 0.05] and depression [SMD = -0.59, 95 % CI (-1.26, 0.09), P = 0.09]. Subgroup analyses revealed that interventions of no less than 3 months improved anxiety [SMD = -1.11, 95 % CI (-2.05, -0.18), P = 0.02] and depression [SMD = -1.01, 95 % CI (-1.93, -0.08), P = 0.03]. CONCLUSION: Home-based cardiac telerehabilitation based on wearable electrocardiogram or heart rate monitoring devices has a positive effect on cardiac function. Long-term (≥ 3 months) cardiac rehabilitation might benefit individuals suffering from anxiety or depression.

7.
Commun Biol ; 7(1): 696, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844522

ABSTRACT

The potential for off-target mutations is a critical concern for the therapeutic application of CRISPR-Cas9 gene editing. Current detection methodologies, such as GUIDE-seq, exhibit limitations in oligonucleotide integration efficiency and sensitivity, which could hinder their utility in clinical settings. To address these issues, we introduce OliTag-seq, an in-cellulo assay specifically engineered to enhance the detection of off-target events. OliTag-seq employs a stable oligonucleotide for precise break tagging and an innovative triple-priming amplification strategy, significantly improving the scope and accuracy of off-target site identification. This method surpasses traditional assays by providing comprehensive coverage across various sgRNAs and genomic targets. Our research particularly highlights the superior sensitivity of induced pluripotent stem cells (iPSCs) in detecting off-target mutations, advocating for using patient-derived iPSCs for refined off-target analysis in therapeutic gene editing. Furthermore, we provide evidence that prolonged Cas9 expression and transient HDAC inhibitor treatments enhance the assay's ability to uncover off-target events. OliTag-seq merges the high sensitivity typical of in vitro assays with the practical application of cellular contexts. This approach significantly improves the safety and efficacy profiles of CRISPR-Cas9 interventions in research and clinical environments, positioning it as an essential tool for the precise assessment and refinement of genome editing applications.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Induced Pluripotent Stem Cells , Humans , Gene Editing/methods , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/cytology , Mutation , RNA, Guide, CRISPR-Cas Systems/genetics , HEK293 Cells
8.
BMC Pulm Med ; 24(1): 271, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844923

ABSTRACT

BACKGROUND: This study leverages a two-sample Mendelian Randomization (MR) approach to explore the causal relationships between 1,400 metabolites and pulmonary fibrosis, using genetic variation as instrumental variables. By adhering to stringent criteria for instrumental variable selection, the research aims to uncover metabolic pathways that may influence the risk and progression of pulmonary fibrosis, providing insights into potential therapeutic targets. METHODS: Utilizing data from the OpenGWAS project, which includes a significant European cohort, and metabolite GWAS data from the Canadian Longitudinal Aging Study (CLSA), the study employs advanced statistical methods. These include inverse variance weighting (IVW), weighted median estimations, and comprehensive sensitivity analyses conducted using the R software environment to ensure the robustness of the causal inferences. RESULTS: The study identified 62 metabolites with significant causal relationships with pulmonary fibrosis, highlighting both risk-enhancing and protective metabolic factors. This extensive list of metabolites presents a broad spectrum of potential therapeutic targets and biomarkers for early detection, underscoring the metabolic complexity underlying pulmonary fibrosis. CONCLUSIONS: The findings from this MR study significantly advance our understanding of the metabolic underpinnings of pulmonary fibrosis, suggesting that alterations in specific metabolites could influence the risk and progression of the disease. These insights pave the way for the development of novel diagnostic and therapeutic strategies, emphasizing the potential of metabolic modulation in managing pulmonary fibrosis.


Subject(s)
Mendelian Randomization Analysis , Metabolomics , Pulmonary Fibrosis , Humans , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolism , Canada/epidemiology , Genome-Wide Association Study , Biomarkers/metabolism , Biomarkers/blood , Disease Progression , Longitudinal Studies , Male , Polymorphism, Single Nucleotide , Female
9.
Diabetes Metab Syndr Obes ; 17: 1987-1997, 2024.
Article in English | MEDLINE | ID: mdl-38746045

ABSTRACT

Purpose: Diabetic nephropathy (DN), a major complication of diabetes mellitus, significantly impacts global health. Identifying individuals at risk of developing DN is crucial for early intervention and improving patient outcomes. This study aims to develop and validate a machine learning-based predictive model using integrated biomarkers. Methods: A cross-sectional analysis was conducted on a baseline dataset involving 2184 participants without DN, categorized based on their development of DN over a follow-up period of 36 months: DN (n=1270) and Non-DN (n=914). Various demographic and clinical parameters were analyzed. The findings were validated using an independent dataset comprising 468 participants, with 273 developing DN and 195 remaining as Non-DN over the follow-up period. Machine learning algorithms, alongside traditional descriptive statistics and logistic regression were used for statistical analyses. Results: Elevated levels of serum creatinine, urea, and reduced eGFR, alongside an increased prevalence of retinopathy and peripheral neuropathy, were prominently observed in those who developed DN. Validation on the independent dataset further confirmed the model's robustness and consistency. The SVM model demonstrated superior performance in the training set (AUC=0.79, F1-score=0.74) and testing set (AUC=0.83, F1-score=0.82), outperforming other models. Significant predictors of DN included serum creatinine, eGFR, presence of diabetic retinopathy, and peripheral neuropathy. Conclusion: Integrating machine learning algorithms with clinical and biomarker data at baseline offers a promising avenue for identifying individuals at risk of developing diabetic nephropathy in type 2 diabetes patients over a 36-month period.

10.
Plants (Basel) ; 13(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38732399

ABSTRACT

The roots, stems, leaves, and seeds of Eucommia ulmoides contain a large amount of trans-polyisoprene (also known as Eu-rubber), which is considered to be an important laticiferous plant with valuable industrial applications. Eu-rubber used in industry is mainly extracted from leaves. Therefore, it is of great significance to identify genes related to regulating the leaf size of E. ulmoides. Plant growth-regulating factors (GRFs) play important roles in regulating leaf size, and their functions are highly conserved across different plant species. However, there have been very limited reports on EuGRFs until now. In this study, eight canonical EuGRFs with both QLQ and WRC domains and two putative eul-miR396s were identified in the chromosome-level genome of E. ulmoides. It is found that, unlike AtGRFs, all EuGRFs contain the miR396s binding site in the terminal of WRC domains. These EuGRFs were distributed on six chromosomes in the genome of E. ulmoides. Collinearity analysis of the E. ulmoides genome revealed that EuGRF1 and EuGRF3 exhibit collinear relationships with EuGRF2, suggesting that those three genes may have emerged via gene replication events. The collinear relationship between EuGRFs, AtGRFs, and OsGRFs showed that EuGRF5 and EuGRF8 had no collinear members in Arabidopsis and rice. Almost all EuGRFs show a higher expression level in growing and developing tissues, and most EuGRF promoters process phytohormone-response and stress-induced cis-elements. Moreover, we found the expression of EuGRFs was significantly induced by gibberellins (GA3) in three hours, and the height of E. ulmoides seedlings was significantly increased one week after GA3 treatment. The findings in this study provide potential candidate genes for further research and lay the foundation for further exploring the molecular mechanism underlying E. ulmoides development in response to GA3.

11.
Int J Colorectal Dis ; 39(1): 73, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38760622

ABSTRACT

BACKGROUND: The incidence of inflammatory bowel disease (IBD) is rising worldwide, but epidemiological data on children and adolescents are lacking. Understanding the global burden of IBD among children and adolescents is essential for global standardization of methodology and treatment options. METHODS: This is a cross-sectional study based on aggregated data. We estimated the prevalence and incidence of IBD in children and adolescents between 1990 and 2019 according to the Global Burden of Disease Study 2019 (GBD 2019). Age-standardized rates (ASRs) and estimated annual percentage changes (EAPCs) were used to compare the burden and trends between different regions and countries. RESULTS: In 2019, there were 25,659 new cases and 88,829 prevalent cases of IBD among children and adolescents globally, representing an increase of 22.8% and 18.5%, respectively, compared to 1990. Over the past 30 years, the incidence and prevalence of IBD among children and adolescents have been highest in high SDI regions, with the most significant increases in East Asia and high-income Asia Pacific. At the age level, incidence and prevalence were significantly higher in the 15-19-year-old age group, while the < 5-year-old group showed the most significant increase in incidence and prevalence. CONCLUSION: The incidence of IBD in children and adolescents is significantly on the rise in some countries and regions, and IBD will remain an important public health issue with extensive healthcare and economic costs in the future. The reported IBD burden in children and adolescents at the global, regional, and national levels will assist in the development of more precise health policies.


Subject(s)
Inflammatory Bowel Diseases , Humans , Adolescent , Child , Inflammatory Bowel Diseases/epidemiology , Incidence , Prevalence , Child, Preschool , Male , Female , Cross-Sectional Studies , Young Adult , Global Health , Infant
12.
J Hazard Mater ; 473: 134645, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38762989

ABSTRACT

While seafood is recognized for its beneficial effects on glycemic control, concerns over elevated levels of per- and polyfluoroalkyl substances (PFASs) may deter individuals from its consumption. This study aims to elucidate the relationship between seafood intake, PFASs exposure, and the odds of diabetes. Drawing from the China National Human Biomonitoring data (2017-2018), we assessed the impact of PFASs on the prevalence of prediabetes and diabetes across 10851 adults, including 5253 individuals (48.1%) reporting seafood consumption. Notably, seafood consumers exhibited PFASs levels nearly double those of non-consumers. Multinomial logistic regression identified significant positive associations between serum PFASs concentrations and prediabetes (T3 vs. T1: ORPFOA: 1.64 [1.08-2.49], ORPFNA: 1.59 [1.19-2.13], ORPFDA: 1.56 [1.13-2.17], ORPFHxS: 1.58 [1.18-2.12], ORPFHpS: 1.73 [1.24-2.43], ORPFOS: 1.51 [1.15-1.96], OR6:2 Cl-PFESA: 1.58 [1.21-2.07]). Significant positive association were also found between PFHpS, PFOS, and diabetes. RCS curves indicated significant non-linear relationships between log-transformed PFOA, PFUnDA, PFOS, 6:2 Cl-PFESA, and FBG levels. Subgroup analyses revealed that seafood consumption significantly mitigated the associations between PFASs burdens and prediabetes/diabetes. These findings suggest a protective role of dietary seafood against the adverse effects of PFASs exposure on glycemic disorders, offering insights for dietary interventions aimed at mitigating diabetes risks associated with PFASs.

13.
Zool Res ; 45(3): 633-647, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38766746

ABSTRACT

Painful stimuli elicit first-line reflexive defensive reactions and, in many cases, also evoke second-line recuperative behaviors, the latter of which reflects the sensing of tissue damage and the alleviation of suffering. The lateral parabrachial nucleus (lPBN), composed of external- (elPBN), dorsal- (dlPBN), and central/superior-subnuclei (jointly referred to as slPBN), receives sensory inputs from spinal projection neurons and plays important roles in processing affective information from external threats and body integrity disruption. However, the organizational rules of lPBN neurons that provoke diverse behaviors in response to different painful stimuli from cutaneous and deep tissues remain unclear. In this study, we used region-specific neuronal depletion or silencing approaches combined with a battery of behavioral assays to show that slPBN neurons expressing substance P receptor ( NK1R) (lPBN NK1R) are crucial for driving pain-associated self-care behaviors evoked by sustained noxious thermal and mechanical stimuli applied to skin or bone/muscle, while elPBN neurons are dispensable for driving such reactions. Notably, lPBN NK1R neurons are specifically required for forming sustained somatic pain-induced negative teaching signals and aversive memory but are not necessary for fear-learning or escape behaviors elicited by external threats. Lastly, both lPBN NK1R and elPBN neurons contribute to chemical irritant-induced nocifensive reactions. Our results reveal the functional organization of parabrachial substrates that drive distinct behavioral outcomes in response to sustained pain versus external danger under physiological conditions.


Subject(s)
Nociception , Parabrachial Nucleus , Animals , Parabrachial Nucleus/physiology , Mice , Nociception/physiology , Neurons/physiology , Pain/physiopathology , Male , Behavior, Animal/physiology
14.
Article in English | MEDLINE | ID: mdl-38747453

ABSTRACT

OBJECTIVES: Both age and CYP2C19 genotypes affect voriconazole plasma concentration; the interaction of age and CYP2C19 genotypes on voriconazole plasma concentration remains unknown. This study aims to investigate the combined effects of age and CYP2C19 genotypes on voriconazole plasma concentration in Chinese patients. METHODS: A total of 480 patients who received voriconazole treatment were recruited. CYP2C19*2 (rs4244285) and CYP2C19*3 (rs4986893) polymorphisms were genotyped. Patients were divided into the young and the elderly groups by age of 60 years old. Influence of CYP2C19 genotype on steady-state trough concentration (Css-min) in overall patients and in age subgroups was analyzed. RESULTS: Voriconazole Css-min correlated positively with age, and mean voriconazole Css-min was significantly higher in the elderly group (P < 0.001). CYP2C19 poor metabolizers showed significantly increased mean voriconazole Css-min in the young but not the elderly group. The percentage of patients with subtherapeutic voriconazole Css-min (<1.0 mg/l) was higher in the young group and that of supratherapeutic voriconazole Css-min (>5.5 mg/l) was higher in the elderly patients. When the average Css-min in the CYP2C19 normal metabolizer genotype was regarded as a reference, CYP2C19 genotypes showed greater impact on voriconazole Css-min in the young group, while the influence of age on voriconazole Css-min exceeded CYP2C19 genotypes in the elderly. CONCLUSION: CYP2C19 genotypes affects voriconazole exposure is age dependent. Influence of CYP2C19 poor metabolizer genotype on increased voriconazoleexposure is prominent in the young, while age is a more important determinant factor for increased voriconazole exposure in the elderly patients.

15.
Curr Res Food Sci ; 8: 100754, 2024.
Article in English | MEDLINE | ID: mdl-38736909

ABSTRACT

Chronic stress disrupts the emotional and energetic balance, which may lead to abnormal behaviors such as binge eating. This overeating behavior alleviating the negative emotions is called emotional eating, which may exacerbate emotional instability and lead to obesity. It is a complex and multifaceted process that has not yet been fully understood. In this study, we constructed an animal model of chronic mild stress (CMS)-induced emotional eating. The emotional eating mice were treated with tryptophan for 21 days to reveal the key role of tryptophan. Furthermore, serum-targeted metabolomics, immunohistochemical staining, qPCR and ELISA were performed. The results showed that CMS led to the binge eating behavior, accompanied by the disturbed intestinal tryptophan-derived serotonin (5-hydroxytryptamine; 5-HT) metabolic pathways. Then we found that tryptophan supplementation improved depression and anxiety-like behaviors as well as abnormal eating behaviors. Tryptophan supplementation improved the abnormal expression of appetite regulators (e.g., AgRP, OX1R, MC4R), and tryptophan supplementation also increased the tryptophan hydroxylase 2 (tph2) and 5-HT receptors in the hypothalamus of CMS mice, which indicates that the 5-HT metabolic pathway influences feeding behavior. In vitro experiments confirmed that 5-HT supplementation ameliorated corticosterone-induced aberrant expression of appetite regulators, such as AgRP and OX1R, in the hypothalamic cell line. In conclusion, our findings revealed that the tryptophan-derived 5-HT pathway plays an important role in emotional eating, especially in providing targeted therapy for stress-induced obesity.

16.
J Med Food ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38770678

ABSTRACT

Momordica charantia (MC), a member of the Cucurbitaceae family, is well known for its pharmacological activities that exhibit hypoglycemic and hypolipidemic properties. These properties are largely because of its abundant bioactive compounds and phytochemicals. Over the years, numerous studies have confirmed the regulatory effects of MC extract on glycolipid metabolism. However, there is a lack of comprehensive reviews on newly discovered MC-related components, such as insulin receptor-binding protein-19, adMc1, and MC protein-30 and triterpenoids 3ß,7ß,25-trihydroxycucurbita-5,23(E)-dien-19-al, and the role of MC in gut microbiota and bitter taste receptors. This review offers an up-to-date overview of the recently reported chemical compositions of MC, including polysaccharides, saponins, polyphenolics, peptides, and their beneficial effects. It also provides the latest updates on the role of MC in the regulation of gut microbiota and bitter taste receptor signaling pathways. As a result, this review will serve as a theoretical basis for potential applications in the creation or modification of MC-based nutrient supplements.

17.
Cell Prolif ; : e13659, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773866

ABSTRACT

Aberrant A-to-I RNA editing, mediated by ADAR1 has been found to be associated with increased tumourigenesis and the development of chemotherapy resistance in various types of cancer. Intrahepatic cholangiocarcinoma (iCCA) is a highly aggressive malignancy with a poor prognosis, and overcoming chemotherapy resistance poses a significant clinical challenge. This study aimed to clarify the roles of ADAR1 in tumour resistance to cisplatin in iCCA. We discovered that ADAR1 expression is elevated in iCCA patients, particularly in those resistant to cisplatin, and associated with poor clinical outcomes. Downregulation of ADAR1 can increase the sensitivity of iCCA cells to cisplatin treatment, whereas its overexpression has the inverse effect. By integrating RNA sequencing and Sanger sequencing, we identified BRCA2, a critical DNA damage repair gene, as a downstream target of ADAR1 in iCCA. ADAR1 mediates the A-to-I editing in BRCA2 3'UTR, inhibiting miR-3157-5p binding, consequently increasing BRCA2 mRNA and protein levels. Furthermore, ADAR1 enhances cellular DNA damage repair ability and facilitates cisplatin resistance in iCCA cells. Combining ADAR1 targeting with cisplatin treatment markedly enhances the anticancer efficacy of cisplatin. In conclusion, ADAR1 promotes tumour progression and cisplatin resistance of iCCA. ADAR1 targeting could inform the development of innovative combination therapies for iCCA.

18.
Cancer Res ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775809

ABSTRACT

Aberrant activation of the Hedgehog (Hh) signaling pathway plays important roles in oncogenesis and therapeutic resistance in several types of cancer. The clinical application of FDA-approved Hh-targeted Smoothened inhibitors (SMOi) is hindered by the emergence of primary or acquired drug resistance. Epigenetic and transcriptional targeted therapies represent a promising direction for developing improved anti-Hh therapies. In this study, we integrated epigenetic/transcriptional-targeted small-molecule library screening with CRISPR/Cas9 knockout library screening and identified CDK9 and CDK12, two transcription elongation regulators, as therapeutic targets for antagonizing aberrant Hh activation and overcoming SMOi resistance. Inhibition of CDK9 or CDK12 potently suppressed Hh signaling and tumor growth in various SMOi responsive or resistant Hh-driven tumor models. Systemic epigenomic profiling elucidated the Hh-driven super-enhancer (SE) landscape and identified IRS1, encoding a critical component and cytoplasmic adaptor protein of the IGF pathway, as an oncogenic Hh-driven SE target gene and effective therapeutic target in Hh-driven tumor models. Collectively, this study identifies SE-driven transcriptional dependencies that represent promising therapeutic vulnerabilities for suppressing the Hh pathway and overcoming SMOi resistance. As CDK9 and IRS inhibitors have already entered human clinical trials for cancer treatment, these findings provide comprehensive preclinical support for developing trials for Hh-driven cancers.

20.
Article in English | MEDLINE | ID: mdl-38702472

ABSTRACT

RATIONALE: Methamphetamine addiction is a persistent and intractable pathological learning and memory, whereas no approved therapeutics is available. However, few attentions have been paid to how associative learning participates in the formation of intractable memory related to drug addiction OBJECTIVES AND METHODS: To investigate the role of associative learning in methamphetamine addiction and the underlying neurobiological mechanism, methamphetamine self-administration, oral sucrose self-administration, chemogenetic neuromanipulation, and fiber photometry in mice were performed in this study. RESULTS: We reported that associative learning increased methamphetamine-induced self-administration, but not oral sucrose self-administration. In addition, the enhancement of methamphetamine-induced self-administration was independent of more methamphetamine consumption, and remained with higher drug-taking and motivation in the absence of visual cues, suggesting the direct effects of the associative learning that enhanced methamphetamine-induced self-administration. Moreover, chemogenetic inactivation of the secondary visual cortex (V2) reduced the enhancement of the drug-taking induced by associative learning but did not alter sucrose-taking. Further fiber photometry of V2 neurons demonstrated that methamphetamine-associative learning elicits V2 neuron excitation, and sucrose-associative learning elicits V2 neuron inhibition. CONCLUSIONS: Therefore, this study reveals the neurobiological mechanism of V2 excitability underlying how associative learning participates in the formation of intractable memory related to drug addiction, and gives evidence to support V2 as a promising target for stimulation therapy for methamphetamine addiction.

SELECTION OF CITATIONS
SEARCH DETAIL
...