Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Food Funct ; 15(9): 5088-5102, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38666497

ABSTRACT

Diets rich in taurine can increase the production of taurine-conjugated bile acids, which are known to exert antihypertensive effects. Despite their benefits to the heart, kidney and arteries, their role in the central nervous system during the antihypertensive process remains unclear. Since hypothalamic paraventricular nucleus (PVN) plays a key role in blood pressure regulation, we aimed to investigate the function of bile acids in the PVN. The concentration of bile acids in the PVN of spontaneously hypertensive rats (SHRs) and normotensive Wistar-Kyoto rats (WKY) fed with normal chow was measured using LC-MS/MS, which identified taurocholic acid (TCA) as the most down-regulated bile acid. To fully understand the mechanism of TCA's functions in the PVN, bi-lateral PVN micro-infusion of TCA was carried out. TCA treatment in the PVN led to a significant reduction in the blood pressure of SHRs, with decreased plasma levels of norepinephrine and improved morphology of cardiomyocytes. It also decreased the number of c-fos+ neurons, reduced the inflammatory response, and suppressed oxidative stress in the PVN of the SHRs. Most importantly, the TGR5 receptors in neurons and microglia were activated. PVN infusion of SBI-115, a TGR5 specific antagonist, was able to counteract with TCA in the blood pressure regulation of SHRs. In conclusion, TCA supplementation in the PVN of SHRs can activate TGR5 in neurons and microglia, reduce the inflammatory response and oxidative stress, suppress activated neurons, and attenuate hypertension.


Subject(s)
Hypertension , Paraventricular Hypothalamic Nucleus , Receptors, G-Protein-Coupled , Taurocholic Acid , Animals , Male , Rats , Antihypertensive Agents/pharmacology , Blood Pressure/drug effects , Hypertension/drug therapy , Hypertension/metabolism , Neurons/drug effects , Neurons/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Paraventricular Hypothalamic Nucleus/drug effects , Rats, Inbred SHR , Rats, Inbred WKY , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics
2.
J Community Genet ; 15(2): 177-185, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38277068

ABSTRACT

Fragile X syndrome is the most common inherited cause of intellectual disability. Considering China's low prevalence, distinct healthcare system, middle-income economic status, and unique culture, China cannot simply replicate the screening systems in European and American countries. In this study, we investigated the attitudes of 450 Chinese medical professionals who received fragile X training on fragile X carrier screening and genetic counseling. Before the training, 57.6% of the respondents were unfamiliar with FXS. After the training, 7.3% of participants are unable to fully master the knowledge. Furthermore, 71.8% believe that the absence of phenotypes during the reproductive age and the availability of simple and feasible testing methods are prerequisites for screening. The presence of the phenotype would still require screening. Regarding the target population, over 90% of the participants support fragile X carrier screening in high-risk pregnant women. As for influencing factors, they consider cost as the most influential factor in pregnant women's decision to undergo screening. The acceptable price range for screening is determined to be ï¿¥200-1000 ($30-150). In terms of the issues and challenges of screening, most medical professionals support the need for genetic counseling for intermediate alleles and 55-60 repeat premutation results. Additionally, some respondents believe that informing patients' family members of positive screening results is necessary. It is also recognized that positive results may lead to anxiety for patients. The findings of this study will provide valuable information for the establishment of fragile X carrier screening system, particularly for low-prevalence or middle-income countries.

3.
Polymers (Basel) ; 15(19)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37836004

ABSTRACT

Lithium-sulfur (Li-S) batteries are considered one of the most promising energy storage systems due to their high theoretical capacity, high theoretical capacity density, and low cost. However, challenges such as poor conductivity of sulfur (S) elements in active materials, the "shuttle effect" caused by lithium polysulfide, and the growth of lithium dendrites impede the commercial development of Li-S batteries. As a crucial component of the battery, the separator plays a vital role in mitigating the shuttle effect caused by polysulfide. Traditional polypropylene, polyethylene, and polyimide separators are constrained by their inherent limitations, rendering them unsuitable for direct application in lithium-sulfur batteries. Therefore, there is an urgent need for the development of novel separators. This review summarizes the applications of different separator preparation methods and separator modification methods in lithium-sulfur batteries and analyzes their electrochemical performance.

4.
Biosensors (Basel) ; 12(10)2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36291013

ABSTRACT

In recent years, many different biosensors are being used to monitor physical health. Electrospun nanofiber materials have the advantages of high specific surface area, large porosity and simple operation. These properties play a vital role in biosensors. However, the mechanical properties of electrospun nanofibers are poor relative to other techniques of nanofiber production. At the same time, the organic solvents used in electrospinning are generally toxic and expensive. Meanwhile, the excellent performance of electrospun nanofibers brings about higher levels of sensitivity and detection range of biosensors. This paper summarizes the principle and application of electrospinning technology in biosensors and its comparison with other technologies.


Subject(s)
Biosensing Techniques , Nanofibers , Porosity , Solvents
5.
FASEB J ; 36(7): e22411, 2022 07.
Article in English | MEDLINE | ID: mdl-35695805

ABSTRACT

NgBR is the Nogo-B receptor, encoded by NUS1 gene. As NgBR contains a C-terminal domain that is similar to cis-isoprenyltransferase (cis-IPTase), NgBR was speculated to stabilize nascent Niemann-Pick type C 2 (NPC2) to facilitate cholesterol transport out of lysosomes. Mutations in the NUS1 were known as risk factors for Parkinson's disease (PD). In our previous study, it was shown that knockdown of Drosophila NUS1 orthologous gene tango14 causes decreased climbing ability, loss of dopaminergic neurons, and decreased dopamine contents. In this study, tango14 mutant flies were generated with a mutation in the C-terminal enzyme activity region using CRISPR/Cas9. Tango14 mutant showed a reduced lifespan with locomotive defects and cholesterol accumulation in Malpighian tubules and brains, especially in dopaminergic neurons. Multilamellar bodies were found in tango14 mutants using electron microscopy. Neurodegenerative-related brain vacuolization was also detected in tango14 knockdown flies in an age-dependent manner. In addition, tango14 knockdown increased α-synuclein (α-syn) neurotoxicity in α-syn-overexpressing flies, with decreased locomotive activities, dopamine contents, and the numbers of dopaminergic neurons in aging flies. Thus, these observations suggest a role of NUS1, the ortholog of tango14, in PD-related pathogenesis.


Subject(s)
Parkinson Disease , Animals , Cholesterol , Dopamine , Dopaminergic Neurons/pathology , Drosophila/genetics , Parkinson Disease/genetics , Parkinson Disease/pathology , alpha-Synuclein/genetics
6.
J Pers Med ; 12(3)2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35330385

ABSTRACT

Expanded non-coding RNA repeats of CCUG are the underlying genetic causes for myotonic dystrophy type 2 (DM2). There is an urgent need for effective medications and potential drug targets that may alleviate the progression of the disease. In this study, 3140 small-molecule drugs from FDA-approved libraries were screened through lethality and locomotion phenotypes using a DM2 Drosophila model expressing 720 CCTG repeats in the muscle. We identified ten effective drugs that improved survival and locomotor activity of DM2 flies, including four that share the same predicted targets in the TGF-ß pathway. The pathway comprises two major branches, the Activin and BMP pathways, which play critical and complex roles in skeletal development, maintenance of homeostasis, and regeneration. The Drosophila model recapitulates pathological features of muscle degeneration in DM2, displaying shortened lifespan, a decline in climbing ability, and progressive muscle degeneration. Increased levels of p-smad3 in response to activin signaling were observed in DM2 flies. Decreased levels of activin signaling using additional specific inhibitors or genetic method ameliorated climbing defects, crushed thoraxes, structure, and organization of muscle fibers. Our results demonstrate that a decrease in activin signaling is sufficient to rescue muscle degeneration and is, therefore, a potential therapeutic target for DM2.

7.
Mol Genet Genomic Med ; 8(6): e1236, 2020 06.
Article in English | MEDLINE | ID: mdl-32281281

ABSTRACT

BACKGROUND: Fragile X syndrome (FXS) is the most common inherited form of intellectual disability caused by a CGG repeat expansion in the 5' untranslated region of the FMR1 gene. When the number of repeats exceeds 200, the gene becomes hypermethylated and is transcriptionally silenced, resulting in FXS. Other allelic forms of the gene that are studied because of their instability or phenotypic consequence include intermediate alleles (45-54 CGG repeats) and premutation alleles (55-200 repeats). Normal alleles are classified as having <45 CGG repeats. Population screening studies have been conducted among American and Australian populations; however, large population-based studies have not been completed in China. METHODS AND RESULTS: In this work we present FXS screening results from 10,145 women of childbearing age from China. We first created and tested a standard panel that was comprised of normal, intermediate, premutation, and full mutation samples, and we performed the screening after confirming the consistency of genotyping results among laboratories. CONCLUSION: Based on our findings, we have determined the intermediate and premutation carrier prevalence of 1/130 and 1/634, respectively, among Chinese women.


Subject(s)
Alleles , Fragile X Syndrome/genetics , Noninvasive Prenatal Testing/standards , Adult , China , Female , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/diagnosis , Genetic Counseling/methods , Genetic Counseling/standards , Humans , Male , Noninvasive Prenatal Testing/methods , Pregnancy , Reference Standards , Trinucleotide Repeat Expansion
8.
FASEB J ; 34(1): 1319-1330, 2020 01.
Article in English | MEDLINE | ID: mdl-31914610

ABSTRACT

Posttranslational modifications enhance the functional diversity of the proteome by modifying the substrates. The UFM1 cascade is a novel ubiquitin-like modification system. The mutations in UFM1, its E1 (UBA5) and E2 (UFC1), have been identified in patients with microcephaly. However, its pathological mechanisms remain unclear. Herein, we observed the disruption of the UFM1 cascade in Drosophila neuroblasts (NBs) decreased the number of NBs, leading to a smaller brain size. The lack of ufmylation in NBs resulted in an increased mitotic index and an extended G2/M phase, indicating a defect in mitotic progression. In addition, live imaging of the embryos revealed an impaired E3 ligase (Ufl1) function resulted in premature entry into mitosis and failed cellularization. Even worse, the embryonic lethality occurred as early as within the first few mitotic cycles following the depletion of Ufm1. Knockdown of ufmylation in the fixed embryos exhibited severe phenotypes, including detached centrosomes, defective microtubules, and DNA bridge. Furthermore, we observed that the UFM1 cascade could alter the level of phosphorylation on tyrosine-15 of CDK1 (pY15-CDK1), which is a negative regulator of the G2 to M transition. These findings yield unambiguous evidence suggesting that the UFM1 cascade is a microcephaly-causing factor that regulates the progression of the cell cycle at mitosis phase entry.


Subject(s)
Cell Division , Drosophila Proteins , Embryo, Nonmammalian/enzymology , G2 Phase , Microcephaly , Ubiquitin-Protein Ligases , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster , Microcephaly/enzymology , Microcephaly/genetics , Signal Transduction/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
9.
Sheng Li Ke Xue Jin Zhan ; 38(3): 208-12, 2007 Jul.
Article in Chinese | MEDLINE | ID: mdl-17882976

ABSTRACT

DNA damage caused by many factors may lead to missense mutation, deletion or illegal recombination. To maintain genomic integrity, cells have evolved complex surveillance mechanisms termed cell cycle checkpoint. DNA damage checkpoint composed of various checkpoint-related proteins can sense DNA damage and execute cell cycle arrest through different signaling transduction pathway involving protein kinase cascades, thereby allowing time for cells to repair the damaged DNA.


Subject(s)
Cell Cycle Checkpoints/physiology , Cell Cycle Proteins/physiology , DNA Damage , Signal Transduction/physiology , Animals , DNA Repair , Humans , Protein Kinases/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...