Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
bioRxiv ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38948848

ABSTRACT

The E. coli strain harboring the polyketide synthase ( Pks) island encodes the genotoxin colibactin, a secondary metabolite reported to have severe implications for human health and for the progression of colorectal cancer. The present study involved whole-genome-wide comparison and phylogenetic analysis of pks harboring E. coli isolates to gain insight into the distribution and evolution of these organism. Fifteen E. coli strains isolated from patients with ulcerative colitis were sequenced, 13 of which harbored pks islands. In addition, 2,654 genomes from the public database were also screened for pks harboring E. coli genomes, 158 of which were pks -positive isolates. Whole-genome-wide comparison and phylogenetic analysis revealed that 171 (158+13) pks -positive isolates belonged to phylogroup B2, and most of the isolates associated to sequence types ST73 and ST95. One isolate from an ulcerative colitis (UC) patient was of the sequence type ST8303. The maximum likelihood tree based on the core genome of pks -positive isolates revealed horizontal gene transfer across sequence types and serotypes. Virulome and resistome analyses revealed the preponderance of virulence genes and a reduced number of antimicrobial genes in Pks -positive isolates. This study strongly contributes to understanding the evolution of pks islands in E. coli .

2.
Vet Microbiol ; 294: 110129, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38810364

ABSTRACT

OBJECTIVE: To conduct molecular prevalence and genetic polymorphism analysis of 24 Swine Farm associated C. difficile ST11 strains, in addition to other representative sequenced ST strains. METHODS: The collected C. difficile strains underwent whole genome sequencing and bioinformatic analysis using the illumina NovaSeq platform, SPAdes, Prokka, MOB-suite, and FastTree. Virulence and antibiotic resistance genes were identified through NCBI Pathogen Database. Cytotoxicity tests were conducted on HT-29 cells and Vero cells to verify the function of toxin A and toxin B. RESULTS: The most prevalent resistance genes in ST11 were found to be against ß-lactamases, aminoglycosides, and tetracycline. A C. difficile isolate (strain 27) with tcdA deletion and high antibiotic resistance genes was far apart from other swine farm associated ST11 isolates in the phylogenetic branch. The remarkable genetic similarity between animal and human C. difficile strains suggests potential transmission of ST11 strains between animals and humans. The plasmid replicon sequences repUS43 were identified in all ST11 strains except one variant (strain 27), and 91.67% (22/24) of these were assessed by MOB-typer as having mobilizable plasmids. CONCLUSION: Swine farm associated C. difficile ST11 carried fewer virulence genes than ST11 strains collected from NCBI database. It is critical to monitor the evolution of C. difficile strains to understand their changing characteristics, host-switching, and develop effective control and prevention strategies.


Subject(s)
Clostridioides difficile , Clostridium Infections , Farms , Phylogeny , Swine Diseases , Animals , Clostridioides difficile/genetics , Clostridioides difficile/classification , Swine , Swine Diseases/microbiology , Swine Diseases/epidemiology , Clostridium Infections/veterinary , Clostridium Infections/microbiology , Clostridium Infections/epidemiology , Whole Genome Sequencing , Anti-Bacterial Agents/pharmacology , Virulence/genetics , Vero Cells , Humans , Chlorocebus aethiops , Drug Resistance, Bacterial/genetics , Plasmids/genetics , Virulence Factors/genetics
3.
Environ Sci Pollut Res Int ; 31(21): 30793-30805, 2024 May.
Article in English | MEDLINE | ID: mdl-38613759

ABSTRACT

Excessive use of synthetic insecticides has resulted in environmental contamination and adverse effects on humans and other non-target organisms. Entomopathogenic fungi offer eco-friendly alternatives; however, their application for pest control requires significant advancement owing to limitations like slow killing time and effectiveness only when applied in higher amounts, whereas exposure to UV radiation, high temperature, and humidity can also reduce their viability and shelf-life. The nanoparticles synthesized using fungal extracellular extracts provide a new approach to use fungal pathogens. Our study focused on the synthesis of Metarhizium anisopliae-based silver nanoparticles (AgNPs) and evaluation of their efficiency on various physiological and behavioral parameters of the mosquito Aedes aegypti. The synthesis, size (27.6 d.nm, PDI = 0.209), zeta potential (- 24.3 mV), and shape of the AgNPs were determined through dynamic light scattering, scanning and transmission electron microscopic, and UV-visual spectroscopic analyses (432 nm). Our results showed significantly reduced survival (100% decrease in case of 3.2 and 1.8 µL/cm2 volumes, and 60% decrease in case of 0.8 µL/cm2 volume), phenoloxidase activity (t = 39.91; p = 0.0001), and gut microbiota, with increased oxidative stress and cell apoptosis in AgNPs-challenged mosquitoes. Furthermore, the AgNPs-exposed mosquitoes presented a concentration-specific decrease in flight locomotor activity (F = 17.312; p < 0.0001), whereas no significant changes in antifungal activity, self-grooming frequencies, or time spent were found. These findings enhance our understanding of mosquito responses to AgNPs exposure, and offer a more efficient mosquito control strategy using entomopathogenic fungi.


Subject(s)
Aedes , Insecticides , Metal Nanoparticles , Silver , Animals , Aedes/drug effects , Silver/chemistry , Silver/pharmacology , Metal Nanoparticles/chemistry , Insecticides/chemistry , Metarhizium , Mosquito Control/methods , Fungi
4.
Infect Dis Poverty ; 13(1): 28, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38610035

ABSTRACT

BACKGROUND: Despite the increasing focus on strengthening One Health capacity building on global level, challenges remain in devising and implementing real-world interventions particularly in the Asia-Pacific region. Recognizing these gaps, the One Health Action Commission (OHAC) was established as an academic community for One Health action with an emphasis on research agenda setting to identify actions for highest impact. MAIN TEXT: This viewpoint describes the agenda of, and motivation for, the recently formed OHAC. Recognizing the urgent need for evidence to support the formulation of necessary action plans, OHAC advocates the adoption of both bottom-up and top-down approaches to identify the current gaps in combating zoonoses, antimicrobial resistance, addressing food safety, and to enhance capacity building for context-sensitive One Health implementation. CONCLUSIONS: By promoting broader engagement and connection of multidisciplinary stakeholders, OHAC envisions a collaborative global platform for the generation of innovative One Health knowledge, distilled practical experience and actionable policy advice, guided by strong ethical principles of One Health.


Subject(s)
One Health , Animals , Asia , Capacity Building , Policy , Zoonoses/prevention & control
5.
Commun Biol ; 7(1): 51, 2024 01 06.
Article in English | MEDLINE | ID: mdl-38184739

ABSTRACT

Carbapenem-resistant Escherichia coli (CREC) poses a severe global public health risk. This study reveals the worldwide geographic spreading patterns and spatiotemporal distribution characteristics of resistance genes in 7918 CREC isolates belonging to 497 sequence types (ST) and originating from 75 countries. In the last decade, there has been a transition in the prevailing STs from highly virulent ST131 and ST38 to higher antibiotic-resistant ST410 and ST167. The rise of multi-drug resistant strains of CREC carrying plasmids with extended-spectrum beta-lactamase (ESBL) resistance genes could be attributed to three important instances of host-switching events. The spread of CREC was associated with the changing trends in blaNDM-5, blaKPC-2, and blaOXA-48, as well as the plasmids IncFI, IncFII, and IncI. There were intercontinental geographic transfers of major CREC strains. Various crucial transmission hubs and patterns have been identified for ST131 in the United Kingdom, Italy, the United States, and China, ST167 in India, France, Egypt, and the United States, and ST410 in Thailand, Israel, the United Kingdom, France, and the United States. This work is valuable in managing CREC infections and preventing CREC occurrence and transmission inside healthcare settings and among diverse hosts.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Escherichia coli/genetics , Public Health , Anti-Bacterial Agents , Carbapenems/pharmacology
6.
BMC Microbiol ; 23(1): 338, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37957579

ABSTRACT

Ventilator-associated pneumonia (VAP) and pyogenic liver abscess (PLA) due to Klebsiella pneumoniae infection can trigger life-threatening malignant consequences, however, there are few studies on the strain-associated clinical pathogenic mechanisms between VAP and PLA. A total of 266 patients consist of 129 VAP and 137 PLA were included for analysis in this study. We conducted a comprehensive survey for the two groups of K. pneumoniae isolates, including phenotypic experiments, clinical epidemiology, genomic analysis, and instrumental analysis, i.e., to obtain the genomic differential profile of K. pneumoniae strains responsible for two distinct infection outcomes. We found that PLA group had a propensity for specific underlying diseases, especially diabetes and cholelithiasis. The resistance level of VAP was significantly higher than that of PLA (78.57% vs. 36%, P < 0.001), while the virulence results were opposite. There were also some differences in key signaling pathways of biochemical processes between the two groups. The combination of iucA, rmpA, hypermucoviscous phenotype, and ST23 presented in K. pneumoniae infection is more important and highly prudent for timely treatment. The present study may contribute a benchmark for the K. pneumoniae clinical screening, epidemiological surveillance, and effective therapeutic strategies.


Subject(s)
Klebsiella Infections , Liver Abscess , Pneumonia, Ventilator-Associated , Humans , Klebsiella pneumoniae , Virulence Factors/genetics , Multilocus Sequence Typing , Phenotype , Klebsiella Infections/epidemiology
7.
Hum Vaccin Immunother ; 19(2): 2256907, 2023 08.
Article in English | MEDLINE | ID: mdl-37807860

ABSTRACT

To understand the epidemiological trend of gonorrhea in China from 2004 to 2021, predict the prevalence of the disease, and provide basic theory and data support for monitoring and managing gonorrhea. Gonorrhea incidence data in China from 2004 to 2021 were collected through the China Public Health Science Data Center and National Administration of Disease Prevention and Control, and the incidence and epidemiological characteristics were analyzed. Statistical analysis was performed using Joinpoint and autoregressive integrated moving average (ARIMA) models. A linear correlation model was used to analyze the correlation between gross domestic product (GDP) and the incidence rate. From 2004 to 2021, a total of 2,289,435 cases of gonorrhea were reported in China, with an average reported incidence rate of 9.46/100,000 people and a downward followed by an upward trend. Individuals with gonorrhea were primarily 20-30 y of age, with 1,034,847 cases (53.38%) from 2004 to 2018. The trend of increasing incidence was most obvious in the 10-20 age group (5,811 cases in 2004 to 12,752 cases in 2018, AAPC = 6.1, P < .001). The incidence of gonorrhea in China was negatively correlated with GDP from 2004 to 2021 (r = -0.547, P = .019). The correlation coefficient between the average incidence growth rate of each region from 2012 to 2018 and the average growth rate of regional GDP was 0.673 (P < .01). The root mean square error (RMSE) of the ARIMA model was 4.89%, showing powerful performance. There would be 97,910 gonorrhea cases in 2023 as predicted by the model.


Subject(s)
Gonorrhea , Humans , Incidence , Prevalence , Gonorrhea/epidemiology , Public Health , China/epidemiology , Models, Statistical , Forecasting
8.
Pestic Biochem Physiol ; 195: 105535, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37666588

ABSTRACT

Entomopathogenic fungi are a promising category of biocontrol agents with mosquitocidal properties. Prior studies have proved their potential to reduce fecundity, human biting and vector competence, all of them together determine vectorial capacity of the mosquitoes. Unfortunately, conventional vector control strategies are inadequate with growing problem of insecticide resistance and environmental deterioration. Therefore, alternate vector control measures are immediately needed and to accomplish that, an improved understanding of behavioral and physiological defense mechanisms of the mosquitoes against fungal infection is essential. In this study, fitness was considered with respect to different behavioral (self-grooming and flight), physiological (antifungal activity and antimicrobial peptides) parameters and survival rates as compared to the control group. We found a significant upregulation in CLSP2, TEP22, Rel1 and Rel2 genes at multiple time periods of fungal infection, which indicates the successful fungal infection and activation of Toll and IMD pathways in mosquitoes. RNAi-mediated silencing of Rel1 and Rel2 genes (transcription factors of Toll and IMD pathways, respectively) significantly reduced the survival, self-grooming frequencies and durations, and flight locomotor activity among adult Ae. aegypti female mosquitoes. Moreover, Rel1 and Rel2 knockdown significantly decreased antifungal activity and antimicrobial peptides expression levels in target mosquitoes. These results indicate an overall decrease in fitness of the mosquitoes after fungal challenge following Rel1 and Rel2 silencing. These findings provide an improved understanding of behavioral and physiological responses in mosquitoes with altered immunity against entomopathogenic fungal infections which can guide us towards the development of novel biocontrol strategies against mosquitoes.


Subject(s)
Aedes , Mycoses , Animals , Humans , Aedes/genetics , Antifungal Agents , Mosquito Vectors/genetics , Gene Silencing , Antimicrobial Peptides
9.
Infect Dis Poverty ; 12(1): 70, 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37537637

ABSTRACT

BACKGROUND: One Health approach is crucial to tackling complex global public health threats at the interface of humans, animals, and the environment. As outlined in the One Health Joint Plan of Action, the international One Health community includes stakeholders from different sectors. Supported by the Bill & Melinda Gates Foundation, an academic community for One Health action has been proposed with the aim of promoting the understanding and real-world implementation of One Health approach and contribution towards the Sustainable Development Goals for a healthy planet. MAIN TEXT: The proposed academic community would contribute to generating high-quality scientific evidence, distilling local experiences as well as fostering an interconnected One Health culture and mindset, among various stakeholders on different levels and in all sectors. The major scope of the community covers One Health governance, zoonotic diseases, food security, antimicrobial resistance, and climate change along with the research agenda to be developed. The academic community will be supported by two committees, including a strategic consultancy committee and a scientific steering committee, composed of influential scientists selected from the One Health information database. A workplan containing activities under six objectives is proposed to provide research support, strengthen local capacity, and enhance global participation. CONCLUSIONS: The proposed academic community for One Health action is a crucial step towards enhancing communication, coordination, collaboration, and capacity building for the implementation of One Health. By bringing eminent global experts together, the academic community possesses the potential to generate scientific evidence and provide advice to local governments and international organizations, enabling the pursuit of common goals, collaborative policies, and solutions to misaligned interests.


Subject(s)
Global Health , One Health , Animals , Humans , Zoonoses/prevention & control , Public Health , Capacity Building
10.
One Health ; 17: 100607, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37588422

ABSTRACT

Background: Due to emerging issues such as global climate change and zoonotic disease pandemics, the One Health approach has gained more attention since the turn of the 21st century. Although One Health thinking has deep roots and early applications in Chinese history, significant gaps exist in China's real-world implementation at the complex interface of the human-animal-environment. Methods: We abstracted the data from the global One Health index study and analysed China's performance in selected fields based on Structure-Process-Outcome model. By comparing China to the Belt & Road and G20 countries, the advances and gaps in China's One Health performance were determined and analysed. Findings: For the selected scientific fields, China generally performs better in ensuring food security and controlling antimicrobial resistance and worse in addressing climate change. Based on the SPO model, the "structure" indicators have the highest proportion (80.00%) of high ranking and the "outcome" indicators have the highest proportion (20.00%) of low ranking. When compared with Belt and Road countries, China scores above the median in almost all indicators (16 out of 18) under the selected scientific fields. When compared with G20 countries, China ranks highest in food security (scores 72.56 and ranks 6th), and lowest in climate change (48.74, 11th). Conclusion: Our results indicate that while China has made significant efforts to enhance the application of the One Health approach in national policies, it still faces challenges in translating policies into practical measures. It is recommended that a holistic One Health action framework be established for China in accordance with diverse social and cultural contexts, with a particular emphasis on overcoming data barriers and mobilizing stakeholders both domestically and globally. Implementation mechanisms, with clarified stakeholder responsibilities and incentives, should be improved along with top-level design.

11.
Int J Food Microbiol ; 401: 110273, 2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37295267

ABSTRACT

Staphylococcus aureus (S. aureus) is a major cause of foodborne infections and its persistence in raw milk is a multifaceted phenomenon that poses a considerable public health challenge. Our study investigated the prevalence, virulence genes, antibiotic resistance, and genetic characterization of S. aureus in raw milk in six Shanghai districts from 2013 to 2022. At 18 dairy farms, a total of 704 S. aureus strains were isolated from 1799 samples tested for drug sensitivity. The highest rates of antibiotic resistance were ampicillin (96.7 %), sulfamethoxazole (65 %), and erythromycin (21.6 %). Between 2018 and 2022, there was a significant decrease in the resistance rates of ceftiofur, ofloxacin, tilmicosin, erythromycin, clindamycin, amoxicillin-clavulanic acid, and sulfamethoxazole in comparison to the period from 2013 to 2017. There were 205 S. aureus strains chosen for whole genome sequencing (WGS), with no more than 2 strains of the same resistance phenotype from each farm per year. The prevalence of mecA-positive strains was 14.15 %, while other antibiotic resistance-associated genes were observed as follows: blaI (70.21 %), lnu(B) (5.85 %), lsa(E) (5.75 %), fexA (6.83 %), erm(C) (4.39 %), tet(L) (9.27 %), and dfrG (5.85 %). Isolates harboring the immune evasion cluster (IEC) genes (scn, chp, and sak) were predominantly categorized as sequence types (STs) 7, 188, 15, 59, and 398. The predominant cluster complexes were CC97, CC1, CC398, and CC1651. In 2017-2022, there was a transition in CC1 from the highly antibiotic-resistant ST9 strain that emerged between 2013 and 2018 to the low-resistant but highly virulent ST1 strain. Retrospective phylogenetic analysis elucidated the evolutionary history of the isolates and demonstrated that the human-animal host transition of S. aureus was linked to the genesis of MRSA CC398. The implementation of extended surveillance will aid in the development of innovative strategies to avoid the transmission of S. aureus along the dairy food chain and the occurrence of public health events.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Animals , Humans , Staphylococcus aureus/genetics , Virulence/genetics , Milk , Phylogeny , Retrospective Studies , China , Staphylococcal Infections/epidemiology , Staphylococcal Infections/veterinary , Anti-Bacterial Agents/pharmacology , Erythromycin , Drug Resistance, Microbial , Sulfamethoxazole , Genetic Variation , Methicillin-Resistant Staphylococcus aureus/genetics , Microbial Sensitivity Tests
12.
Mater Today Bio ; 20: 100612, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37063776

ABSTRACT

Bacteriophages (phages) are nanostructured viruses with highly selective antibacterial properties that have gained attention beyond eliminating bacteria. Specifically, M13 phages are filamentous phages that have recently been studied in various aspects of nanomedicine due to their biological advantages and more compliant engineering capabilities over other phages. Having nanofiber-like morphology, M13 phages can reach varied target sites and self-assemble into multidimensional scaffolds in a relatively safe and stable way. In addition, genetic modification of the coat proteins enables specific display of peptides and antibodies on the phages, allowing for precise and individualized medicine. M13 phages have also been subjected to novel engineering approaches, including phage-based bionanomaterial engineering and phage-directed nanomaterial combinations that enhance the bionanomaterial properties of M13 phages. In view of these features, researchers have been able to utilize M13 phages for therapeutic applications such as drug delivery, biodetection, tissue regeneration, and targeted cancer therapy. In particular, M13 phages have been utilized as a novel bionanomaterial for precisely mimicking natural tissue environment in order to overcome the shortage in tissue and organ donors. Hence, in this review, we address the recent studies and advances of using M13 phages in the field of nanomedicine as therapeutic agents based upon their characteristics as novel bionanomaterial with biomolecules displayed. This paper also emphasizes the novel engineering approach that enhances M13 phage's bionanomaterial capabilities. Current limitations and future approaches are also discussed to provide insight in further progress for M13 phage-based clinical applications.

13.
Sci Total Environ ; 876: 162807, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-36921865

ABSTRACT

In Shanghai, the prevalence of tet(X4) and tet(X4)-carrying plasmid from food-producing -animal Enterobacteriales has not been intensively investigated. Here, five tet(X4)-positive swine-origin E. coli strains were characterized among 652 food-producing-animal E. coli isolates in Shanghai during 2018-2021 using long-term surveillance among poultry, swine and cattle, antimicrobial susceptibility testing, and tet(X4)-specific PCR. A combination of short- and long-read sequencing technologies demonstrated that the five strains with 4 STs carried a nearly identical 193 kb tet(X4)-bearing plasmid (p193k-tetX4) belonging to the same IncFIA(HI1)/IncHI1A/IncHIB plasmid family (p193k). Surprisingly, 34 of the 151 global tet(X4)-positive plasmids was the p193k members and exclusively pandemic in China. Other p193k members harboring many critically important ARGs (mcr or blaNDM) with particular genetic environment are widespread throughout human-animal-environmental sources, with 33.77 % human origin. Significantly, phylogenetic analysis of 203 p193k-tetX4 sequences revealed that human- and animal-origin plasmids clustered within the same phylogenetic subgroups. The largest lineage (173/203) comprised 161 E. coli, 6 Klebsiella, 3 Enterobacter, 2 Citrobacter, and 1 Leclercia spp. from animals (n = 143), humans (n = 18), and the environment (n = 9). Intriguingly, the earliest 2015 E. coli strain YA_GR3 from Malaysian river water and 2016 S. enterica Chinese clinical strain GX1006 in another lineage demonstrated that p193k-tetX4 have been widely spread from S. enterica or E. coli to other Enterobacterales. Furthermore, 180 E. coli p193k-tetX4 strains were widespread cross-sectorial transmission among food animals, pets, migratory birds, human and ecosystems. Our findings proved the extensive transmission of the high-risk p193k harboring crucial ARGs across multiple interfaces and species. Therefore, one-health-based systemic surveillance of these similar high-risk plasmids across numerous sources and bacterial species is extremely essential.


Subject(s)
Drug Resistance, Bacterial , Escherichia coli Infections , Escherichia coli , Animals , Cattle , Humans , China , Ecosystem , Escherichia coli/genetics , Escherichia coli/pathogenicity , Microbial Sensitivity Tests , Phylogeny , Plasmids , Public Health , Swine , Escherichia coli Infections/microbiology , Drug Resistance, Bacterial/genetics
15.
Infect Dis Poverty ; 11(1): 98, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36114584

ABSTRACT

BACKGROUND: Antimicrobial resistance (AMR) is one of the greatest threats to animal and public health. Here, we conducted a dynamic surveillance of Escherichia coli on Chongming Island in Shanghai during 2009-2021 to identify the characteristics and trends of Chongming's AMR pandemic. METHODS: Rectal (cloaca) swabs from four poultry and nine swine farms (Chongming Island, 2009-2021) were collected for E. coli strains acquisition. The micro-broth dilution method was used to test antimicrobial susceptibility of E. coli isolates against 10 antimicrobial classes including 15 antimicrobials. Utilizing generalized linear mixed models (GLMMs) and co-occurrence analyses, we further explored the multiple-drug-resistance (MDR) combinations and dynamic patterns of E. coli over 10 years in two food animals. RESULTS: Total of 863 MDR isolates were found among 945 collected E. coli isolates, 337 from poultry and 608 from swine. Both isolates exhibited high resistant rates (> 70%) to tetracyclines, phenicols, sulfonamides, penicillins, and aminoglycosides (only in swine). The resistant rates of swine isolates to penicillins, aminoglycosides, tetracyclines, phenicols, and polymyxins were significantly higher than those of poultry isolates, whereas resistance to fluoroquinolones was reversed. Resistance to polymyxins decreased similarly in swine (42.4% in 2009 to 0.0% in 2021) and poultry isolates (from 16.5% to 0.0%). However, resistance to other seven antimicrobial classes (excluding carbapenems and penicillins) declined dramatically in swine isolates, particularly fluoroquinolones (from 80.5% to 14.4%), and tendencies of resistance to the seven classes showed markedly divergent patterns in poultry isolates. Using Poisson GLMMs, the AMR carriage since 2016 was significantly lower than that of 2009 (odds ratio < 1), indicating a decline in the risk of MDR emergence. Furthermore, despite the highly diverse MDR profiles, co-occurrence analysis identified two prominent MDR clusters of penicillins-phenicols-fluoroquinolones in poultry and aminoglycosides-tetracyclines-sulfonamides-phenicols in swine. CONCLUSIONS: Our study uncovered vastly distinct AMR patterns and dynamic tendencies of poultry and swine E. coli isolates from Chongming. Meanwhile, Chongming's AMR status has ameliorated, as indicated by the decline in antimicrobials prevalence (particularly in swine), lower likelihood of MDR emergence and low carbapenem-, cephalosporin-, and polymyxin resistance. Importantly, this surveillance results are the vital basis for future policy development in Chongming and Shanghai.


Subject(s)
Anti-Infective Agents , Escherichia coli Infections , Aminoglycosides , Animals , Anti-Bacterial Agents/pharmacology , Carbapenems , Cephalosporins , China/epidemiology , Drug Resistance, Bacterial , Escherichia coli , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Fluoroquinolones , Microbial Sensitivity Tests , Penicillins , Polymyxins , Poultry , Sulfonamides , Swine , Tetracyclines
17.
Infect Dis Poverty ; 11(1): 92, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-35996187

ABSTRACT

BACKGROUND: Antimicrobial resistance (AMR) is one of the top ten global public health challenges. However, given the lack of a comprehensive assessment of worldwide AMR status, our objective is to develop a One Health-based system-wide evaluation tool on global AMR. METHODS: We have further developed the three-hierarchical Global One Health Index (GOHI)-AMR indicator scheme, which consists of five key indicators, 17 indicators, and 49 sub-indicators, by incorporating 146 countries' data from diverse authoritative databases, including WHO's Global Antimicrobial Resistance and Use Surveillance System (GLASS) and the European CDC. We investigated the overall- or sub-rankings of GOHI-AMR at the international/regional/national levels for data preprocessing and score calculation utilizing the existing GOHI methodology. Additionally, a correlation analysis was conducted between the GOHI-AMR and other socioeconomic factors. RESULTS: The average GOHI-AMR score for 146 countries is 38.45. As expected, high-income countries (HICs) outperform the other three income groups on overall rankings and all five key indicators of GOHI-AMR, whereas low-income countries unexpectedly outperform upper-middle-income countries and lower-middle-income countries on the antibiotics-resistant key indicator (ARR) and ARR-subordinate indicators, including carbapenem-, ß-lactam-, and quinolone resistance, and even HICs on aminoglycoside resistance. There were no significant differences among the four groups on the environmental-monitoring indicator (P > 0.05). GOHI-AMR was positively correlated with gross domestic product, life expectancy, and AMR-related publications, but negatively with natural growth rate and chronic respiratory disease. In contrast to Cyprus, the remarkably lower prevalence of "ESKAPE pathogens" in high-scoring Sweden and Denmark highlights Europe's huge gaps. China and Russia outperformed the other three BRICS countries on all key indicators, particularly India's ARR and Brazil's AMR laboratory network and coordination capacity. Furthermore, significant internal disparities in carbapenem-resistant Klebsiella pneumoniae (CRKP) and methicillin-resistant Staphylococcus aureus (MRSA) prevalence were observed between China and the USA, with MRSA prevalence both gradually declining, whereas CRKP prevalence has been declining in the USA but increasing in China, consistent with higher carbapenems-related indicator' performance in USA. CONCLUSIONS: GOHI-AMR is the most comprehensive tool currently available for the assessment of AMR status worldwide. We discovered unique features impacting AMR in each country and offered precise recommendations to improve the capacity to tackle AMR in low-ranking countries.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , One Health , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Carbapenems/pharmacology , Drug Resistance, Bacterial
18.
BMC Microbiol ; 22(1): 151, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35672661

ABSTRACT

BACKGROUND: Leptospirosis is a significant emerging infectious disease worldwide. Rodents are considered to be the most critical hosts of Leptospira spp. Fujian Province is a region highly endemic for leptospirosis in China. However, the genetic diversity of leptospires circulating among rodents in Fujian is limited. RESULTS: The carrier status of rodents for Leptospira spp. was investigated by culture and serological detection in Fujian during 2018-2020. A total of 710 rodents, including 11 species, were trapped, with Rattus losea being the dominant trapped species (50.56%). Fourteen pathogenic Leptospira strains were obtained. Seven L. borgpetersenii serogroup Javanica strains belonging to ST143, 4 L. interrogans serogroup Icterohaemorrhagiae strains belonging to ST1 and ST17, 2 L. interrogans serogroup Bataviae strains belonging to ST96 and ST333, and 1 L. interrogans serogroup Pyrogenes strains belonging to ST332 were identified using 16S rDNA gene sequencing, microscopic agglutination test (MAT) and Multilocus sequence typing (MLST). L. borgpetersenii serogroup Javanica belonging to ST143 was the dominant type (50.00%). A total of 387 rodent serum samples were tested by MAT. Serum were considered positive for seroreactivity at a titer ≥ 1:160 against at least one serovar. A total of 90 (23.26%) serum samples tested positive, and four serogroups were identified, with Javanica being the dominant serogroup (87.78%), which was similar to the dominant serogroup isolated from rodents. This study demonstrates a high prevalence of leptospirosis in rodents and public health education among high-risk workers is highly recommended. CONCLUSIONS: R. losea was the dominant trapped rodent, and L. borgpetersenii serogroup Javanica ST143 was widely distributed among rodents in Fujian from 2018 to 2020. Despite the low number of isolates obtained from rodents, this study suggests that continuous epidemiological surveillance of the aetiological characteristics of pathogenic Leptospira in wild animal reservoirs may help reduce the possible risk of disease transmission.


Subject(s)
Leptospira , Leptospirosis , Animals , China/epidemiology , Leptospirosis/epidemiology , Leptospirosis/veterinary , Multilocus Sequence Typing , Rats , Rodentia , Serogroup
19.
Infect Dis Poverty ; 11(1): 63, 2022 Jun 04.
Article in English | MEDLINE | ID: mdl-35659087

ABSTRACT

BACKGROUND: Brucellosis poses a serious threat to human and animal health, particularly in developing countries such as China. The Inner Mongolia Autonomous Region is one of the most severely brucellosis-endemic provinces in China. Currently, the host immune responses functioning to control Brucella infection and development remain poorly understood. The aim of this study is to further clarify the key immunity characteristics of diverse stages of brucellosis in Inner Mongolia. METHODS: We collected a total of 733 blood samples from acute (n = 137), chronic (n = 316), inapparent (n = 35), recovery (n = 99), and healthy (n = 146) groups from the rural community of Inner Mongolia between 2014 and 2015. The proportions of CD4+, CD8+, Th1, Th2, and Th17 T cells in peripheral blood and the expression of TLR2 and TLR4 in lymphocytes, monocytes and granulocytes were examined using flow cytometry analysis. The differences among the five groups were compared using one-way ANOVA and the Kruskal-Wallis method, respectively. RESULTS: Our results revealed that the proportions of CD4+ and CD8+ T cells were significantly different among the acute, chronic, recovery, and healthy control groups (P < 0.05), with lower proportions of CD4+ T cells and a higher proportion of CD8+ T cells in the acute, chronic, and recovery groups. The proportion of Th1 cells in the acute, chronic, and inapparent groups was higher than that in the healthy and recovery groups; however, there was no significant difference between patients and healthy individuals (P > 0.05). The proportion of Th2 lymphocytes was significantly higher in the acute and healthy groups than in the inapparent group (P < 0.05). The proportion of Th17 cells in the acute group was significantly higher than that in the healthy control, chronic, and inapparent groups (P < 0.05). Finally, the highest expression of TLR4 in lymphocytes, monocytes and granulocytes was observed in the recovery group, and this was followed by the acute, chronic, healthy control, and inapparent groups. There was a significant difference between the recovery group and the other groups, except for the acute group (P < 0.05). Moreover, a correlation in TLR4 expression was observed in lymphocytes, monocytes and granulocytes among the five groups (r > 0.5), except for the inapparent group between lymphocytes and granulocytes (r = 0.34). CONCLUSIONS: Two key factors (CD8+ T cells and TLR4) in human immune profiles may closely correlate with the progression of brucellosis. The detailed function of TLR4 in the context of a greater number of cell types or tissues in human or animal brucellosis and in larger samples should be further explored in the future.


Subject(s)
Brucellosis , CD8-Positive T-Lymphocytes , Animals , Brucellosis/epidemiology , China/epidemiology , Humans , Rural Population , Toll-Like Receptor 4
20.
Infect Dis Poverty ; 11(1): 57, 2022 May 22.
Article in English | MEDLINE | ID: mdl-35599310

ABSTRACT

BACKGROUND: A One Health approach has been increasingly mainstreamed by the international community, as it provides for holistic thinking in recognizing the close links and inter-dependence of the health of humans, animals and the environment. However, the dearth of real-world evidence has hampered application of a One Health approach in shaping policies and practice. This study proposes the development of a potential evaluation tool for One Health performance, in order to contribute to the scientific measurement of One Health approach and the identification of gaps where One Health capacity building is most urgently needed. METHODS: We describe five steps towards a global One Health index (GOHI), including (i) framework formulation; (ii) indicator selection; (iii) database building; (iv) weight determination; and (v) GOHI scores calculation. A cell-like framework for GOHI is proposed, which comprises an external drivers index (EDI), an intrinsic drivers index (IDI) and a core drivers index (CDI). We construct the indicator scheme for GOHI based on this framework after multiple rounds of panel discussions with our expert advisory committee. A fuzzy analytical hierarchy process is adopted to determine the weights for each of the indicators. RESULTS: The weighted indicator scheme of GOHI comprises three first-level indicators, 13 second-level indicators, and 57 third-level indicators. According to the pilot analysis based on the data from more than 200 countries/territories the GOHI scores overall are far from ideal (the highest score of 65.0 out of a maximum score of 100), and we found considerable variations among different countries/territories (31.8-65.0). The results from the pilot analysis are consistent with the results from a literature review, which suggests that a GOHI as a potential tool for the assessment of One Health performance might be feasible. CONCLUSIONS: GOHI-subject to rigorous validation-would represent the world's first evaluation tool that constructs the conceptual framework from a holistic perspective of One Health. Future application of GOHI might promote a common understanding of a strong One Health approach and provide reference for promoting effective measures to strengthen One Health capacity building. With further adaptations under various scenarios, GOHI, along with its technical protocols and databases, will be updated regularly to address current technical limitations, and capture new knowledge.


Subject(s)
One Health , Forecasting , Global Health
SELECTION OF CITATIONS
SEARCH DETAIL
...