Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 50(2): 922-934, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36317870

ABSTRACT

PURPOSE: To investigate the prognostic performance of multi-level computed tomography (CT)-dose fusion dosiomics at the image-, matrix-, and feature-levels from the gross tumor volume (GTV) at nasopharynx and the involved lymph node for nasopharyngeal carcinoma (NPC) patients. METHODS: Two hundred and nineteen NPC patients (175 vs. 44 for training vs. internal validation) were used to train prediction model, and 32 NPC patients were used for external validation. We first extracted CT and dose information from intratumoral nasopharynx (GTV_nx) and lymph node (GTV_nd) regions. Then, the corresponding peritumoral regions (RING_3 mm and RING_5 mm) were also considered. Thus, the individual and combination of intratumoral and peritumoral regions were as follows: GTV_nx, GTV_nd, RING_3 mm_nx, RING_3 mm_nd, RING_5 mm_nx, RING_5 mm_nd, GTV_nxnd, RING_3 mm_nxnd, RING_5 mm_nxnd, GTV + RING_3 mm_nxnd, and GTV + RING_5 mm_nxnd. For each region, 11 models were built by combining five clinical parameters and 127 features from: (1) dose images alone; (2-7) fused dose and CT images via wavelet-based fusion using CT weights of 0.2, 0.4, 0.6, and 0.8, gradient transfer fusion, and guided-filtering-based fusion (GFF); (8) fused matrices (sumMat); (9-10) fused features derived via feature averaging (avgFea) and feature concatenation (conFea); and finally, (11) CT images alone. The concordance index (C-index) and Kaplan-Meier curves with log-rank test were used to assess model performance. RESULTS: The fusion models' performance was better than single CT/dose model on both internal and external validation. Models that combined the information from both GTV_nx and GTV_nd regions outperformed the single region model. For internal validation, GTV + RING_3 mm_nxnd GFF model achieved the highest C-index both in recurrence-free survival (RFS) and metastasis-free survival (MFS) predictions (RFS: 0.822; MFS: 0.786). The highest C-index in external validation set was achieved by RING_3 mm_nxnd model (RFS: 0.762; MFS: 0.719). The GTV + RING_3 mm_nxnd GFF model is able to significantly separate patients into high-risk and low-risk groups compared to dose-only or CT-only models. CONCLUSION: Fusion dosiomics model combining the primary tumor, the involved lymph node, and 3 mm peritumoral information outperformed single-modality models for different outcome predictions, which is helpful for clinical decision-making and the development of personalized treatment.


Subject(s)
Nasopharyngeal Neoplasms , Tomography, X-Ray Computed , Humans , Nasopharyngeal Carcinoma/diagnostic imaging , Nasopharyngeal Carcinoma/pathology , Prognosis , Tomography, X-Ray Computed/methods , Nasopharyngeal Neoplasms/diagnostic imaging , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology
2.
Front Oncol ; 11: 657208, 2021.
Article in English | MEDLINE | ID: mdl-33937068

ABSTRACT

PURPOSE: This retrospective study aimed to evaluate the dosimetric effects of a rectal insertion of Kushen Ningjiao on rectal protection using deformable dose accumulation and machine learning-based discriminative modelling. MATERIALS AND METHODS: Sixty-two patients with cervical cancer enrolled in a clinical trial, who received a Kushen Ningjiao injection of 20 g into their rectum for rectal protection via high-dose rate brachytherapy (HDR-BT, 6 Gy/f), were studied. The cumulative equivalent 2-Gy fractional rectal surface dose was deformably summed using an in-house-developed topography-preserved point-matching deformable image registration method. The cumulative three-dimensional (3D) dose was flattened and mapped to a two-dimensional (2D) plane to obtain the rectal surface dose map (RSDM). For analysis, the rectal dose (RD) was further subdivided as follows: whole, anterior, and posterior 3D-RD and 2D-RSDM. The dose-volume parameters (DVPs) were extracted from the 3D-RD, while the dose geometric parameters (DGPs) and textures were extracted from the 2D-RSDM. These features were fed into 192 classification models (built with 8 classifiers and 24 feature selection methods) for discriminating the dose distributions between pre-Kushen Ningjiao and pro-Kushen Ningjiao. RESULTS: The rectal insertion of Kushen Ningjiao dialated the rectum in the ambilateral direction, with the rectal column increased from pre-KN 15 cm3 to post-KN 18 cm3 (P < 0.001). The characteristics of DGPs accounted for the largest portions of the top-ranked features. The top-ranked dosimetric features extracted from the posterior rectum were more reliable indicators of the dosimetric effects/changes introduced by the rectal insertion of Kushen Ningjiao. A significant dosimetric impact was found on the dose-volume parameters D1.0cc-D2.5cc extracted on the posterior rectal wall. CONCLUSIONS: The rectal insertion of Kushen Ningjiao incurs significant dosimetric changes on the posterior rectal wall. Whether this effect is eventually translated into clinical gains requires further long-term follow-up and more clinical data for confirmation.

3.
Angew Chem Int Ed Engl ; 56(45): 14113-14118, 2017 11 06.
Article in English | MEDLINE | ID: mdl-28929555

ABSTRACT

GeSe is a IV-VI semiconductor, like the excellent thermoelectric materials PbTe and SnSe. Orthorhombic GeSe has been predicted theoretically to have good thermoelectric performance but is difficult to dope experimentally. Like PbTe, rhombohedral GeTe has a multivalley band structure, which is ideal for thermoelectrics and also promotes the formation of Ge vacancies to provide enough carriers for electrical transport. Herein, we investigate the thermoelectric properties of GeSe alloyed with AgSbSe2 , which stabilizes a new rhombohedral structure with higher symmetry that leads to a multivalley Fermi surface and a dramatic increase in carrier concentration. The zT of GeAg0.2 Sb0.2 Se1.4 reaches 0.86 at 710 K, which is 18 times higher than that of pristine GeSe and over four times higher than doped orthorhombic GeSe. Our results open a new avenue towards developing novel thermoelectric materials through crystal phase engineering using a strategy of entropy stabilization of high-symmetry alloys.

SELECTION OF CITATIONS
SEARCH DETAIL
...