Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Meat Sci ; 204: 109259, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37352783

ABSTRACT

This work aimed to compare the effects of helium and air surface micro-discharge (SMD) plasma on the microbial safety and quality of beef tissues. For the beef tissue model, the concentration and diffusion depth of hydroxyl radical and ozone have different change patterns over plasma treatment time and distance in helium and air SMD plasma. The inactivation efficiency of helium plasma depended on the plasma treatment time and distance, while the inactivation efficiency of air plasma only depended on the treatment time. For the fresh beef slices, air SMD plasma treatment exhibited a higher antimicrobial activity against S. aureus and E. coli than helium SMD plasma treatment (1.5 versus 0.9; 0.9 versus 0.28 log CFU/g at 10 min). However, air SMD plasma treatment caused more adverse effects on beef quality, leading to a smooth surface, extensive lipid oxidation, protein structure damage, low pH and discoloration compared to helium SMD plasma treatment. This work provides valuable guidelines for the working gas choice in the practical application of plasma to meat decontamination.


Subject(s)
Escherichia coli , Food Microbiology , Animals , Cattle , Colony Count, Microbial , Helium/pharmacology , Staphylococcus aureus
2.
Opt Express ; 30(26): 47879-47895, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36558706

ABSTRACT

In this study, we propose an approach to stretch or translate images using gradient-index (GRIN) elements with a rotationally symmetric shape in lens systems. In this method, the GRIN material, instead of optical surfaces, are utilized to enable a breaking of rotational symmetry for the two image translations. GRIN expression with anamorphic and tilting terms is introduced. A pair of GRIN elements in front of the given system alters the magnification in two orthogonal directions using the anamorphic terms in the expression, which realizes image stretching. A pair of GRIN elements with tilting terms is used after the given system tilts the optical path to achieve a transverse displacement of the image. The structure of the given system remains unchanged when these translations are performed. A design method for the GRIN elements is presented. Additionally, a design example is presented whose image is stretched by 1.33 times in one direction and displaced to one side of its axis to demonstrate the feasibility of the proposed approach. The approach in this study may enable novel imaging GRIN lens system designs with flexible image positions or special optical functions.

3.
J Hazard Mater ; 418: 126013, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34102362

ABSTRACT

Waterborne diseases caused by pathogenic microorganisms pose severe threats to human health. ZnO nanoparticles (NPs) hold great potentials as an effective, economical and eco-friendly method for water disinfection, but the exact antimicrobial mechanism of ZnO NPs under visible-light illumination is still not clear. Herein, we investigate the visible-light-driven photocatalytic inactivation mechanism of amino-functionalized hydrophilic ZnO (AH-ZnO) NPs against Staphylococcus aureus (S. aureus) in aqueous environment from the perspective of electron transfer theory. The results show that the antibacterial effects of AH-ZnO NPs are dependent on the AH-ZnO NPs concentration and treatment time. The bulk ORP value and released Zn2+ concentration in AH-ZnO NPs solutions increase with AH-ZnO NPs concentration. The SEM and intracellular protein leakage results indicate that AH-ZnO NPs can adhere to S. aureus surface without causing obvious cell membrane disruption. The photoluminescence (PL) intensity and fluorescence lifetime of AH-ZnO NPs are remarkedly decreased after adding S. aureus, which confirms the electron transfer from S. aureus to AH-ZnO NPs. Moreover, the ΔPL intensity is closely correlated with the inactivation efficiency, demonstrating that the interfacial electron transfer in S. aureus/AH-ZnO NPs composites contributes to the antibacterial activity, which is speculated to disrupt the normal respiratory electron transfer chain of S. aureus, thereby causing intracellular ROS generation, cell membrane depolarization and eventually apoptosis-like death.


Subject(s)
Metal Nanoparticles , Zinc Oxide , Anti-Bacterial Agents/pharmacology , Electrons , Humans , Microbial Sensitivity Tests , Staphylococcus aureus , Water , X-Ray Diffraction
4.
Water Res ; 188: 116513, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33091801

ABSTRACT

Although the identification of effective reactive oxygen species (ROS) generated by plasma has been extensively studied, yet the subcellular mechanism of microbial inactivation has never been clearly elucidated in plasma disinfection processes. In this study, subcellular mechanism of yeast cell inactivation during plasma-liquid interaction was revealed in terms of comprehensive factors including cell morphology, membrane permeability, lipid peroxidation, membrane potential, intracellular redox homeostasis (intracellular ROS and H2O2, and antioxidant system (SOD, CAT and GSH)), intracellular ionic equilibrium (intracellular H+ and K+) and energy metabolism (mitochondrial membrane potential, intracellular Ca2+ and ATP level). The ROS analysis show that ·OH, 1O2, ·O2-and H2O2 were generated in this plasma-liquid interaction system and ·O2-served as the precursor of 1O2. Additionally, the solution pH was reduced. Plasma can effectively inactivate yeast cells mainly via apoptosis by damaging cell membrane, intracellular redox and ion homeostasis and energy metabolism as well as causing DNA fragmentation. ROS scavengers (l-His, d-Man and SOD) and pH buffer (phosphate buffer solution, PBS) were employed to investigate the role of five antimicrobial factors (·OH, 1O2, ·O2-, H2O2 and low pH) in plasma sterilization. Results show that they have different influences on the aforementioned cell physiological activities. The ·OH and 1O2 contributed most to the yeast inactivation. The ·OH mainly attacked cell membrane and increased cell membrane permeability. The disturb of cell energy metabolism was mainly attributed to 1O2. The damage of cell membrane as well as extracellular low pH could break the intracellular ionic equilibrium and further reduce cell membrane potential. The remarkable increase of intracellular H2O2 was mainly due to the influx of extracellular H2O2 via destroyed cell membrane, which played a little role in yeast inactivation during 10-min plasma treatment. These findings provide comprehensive insights into the antimicrobial mechanism of plasma, which can promote the development of plasma as an alternative water disinfection strategy.


Subject(s)
Plasma Gases , Disinfection , Humans , Hydrogen Peroxide , Microbial Viability , Plasma , Pressure , Reactive Oxygen Species , Water
5.
Sci Total Environ ; 703: 134965, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-31740060

ABSTRACT

Waterborne diseases caused by pathogenic microorganisms pose a severe threat to human health. Cold atmospheric-pressure plasma (CAP) has recently gained much interest as a promising fast, effective, economical and eco-friendly method for water disinfection. However, the antimicrobial mechanism of CAP in aqueous environments is still not clearly understood. Herein, we investigate the role of several short-lived reactive oxygen species (ROS) and cellular responses in the CAP inactivation of yeast cells in water. The results show that singlet oxygen (1O2), hydroxyl radical (OH) and superoxide anion (O2-) are generated in this plasma-water system, and O2- served as the precursor of OH. The 5-min plasma treatment resulted in the effective inactivation (more than 2-log reduction) of yeast cells in water. The ROS scavengers significantly increased the survival ratio in the following order: water < D-Man (scavenging OH) < SOD (scavenging O2-) < L-His (scavenging 1O2), indicating that 1O2 contributes the most to the yeast inactivation. In addition, the acidic pH had a synergetic antimicrobial effect with ROS against the yeast cells. During the CAP inactivation process, yeast cells underwent apoptosis in the first 3 min due to the accumulation of intracellular ROS, mitochondrial dysfunction and intracellular acidification, later followed by necrosis under longer exposure times, attributed to the destruction of the cell membrane. Additionally, L-His could switch the cell fate from necrosis to apoptosis through mitigating plasma-induced oxidative stress, indicating that the level of oxidative stress is a critical factor for cell death fate determination. These findings provide comprehensive insights into the antimicrobial mechanism of CAP, which can promote the development of CAP as an alternative water disinfection strategy.


Subject(s)
Disinfection/methods , Water Purification/methods , Anti-Bacterial Agents , Anti-Infective Agents , Atmospheric Pressure , Hydroxyl Radical , Plasma Gases , Reactive Oxygen Species , Singlet Oxygen , Superoxides
SELECTION OF CITATIONS
SEARCH DETAIL
...