Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 265
Filter
1.
Nat Commun ; 15(1): 5882, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003268

ABSTRACT

Solar-driven CO2 reduction to yield high-value chemicals presents an appealing avenue for combating climate change, yet achieving selective production of specific products remains a significant challenge. We showcase two osmium complexes, przpOs, and trzpOs, as CO2 reduction catalysts for selective CO2-to-methane conversion. Kinetically, the przpOs and trzpOs exhibit high CO2 reduction catalytic rate constants of 0.544 and 6.41 s-1, respectively. Under AM1.5 G irradiation, the optimal Si/TiO2/trzpOs have CH4 as the main product and >90% Faradaic efficiency, reaching -14.11 mA cm-2 photocurrent density at 0.0 VRHE. Density functional theory calculations reveal that the N atoms on the bipyrazole and triazole ligands effectively stabilize the CO2-adduct intermediates, which tend to be further hydrogenated to produce CH4, leading to their ultrahigh CO2-to-CH4 selectivity. These results are comparable to cutting-edge Si-based photocathodes for CO2 reduction, revealing a vast research potential in employing molecular catalysts for the photoelectrochemical conversion of CO2 to methane.

2.
Adv Sci (Weinh) ; : e2401664, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704673

ABSTRACT

Deep-blue multi-resonance (MR) emitters with stable and narrow full-width-at-half-maximum (FWHM) are of great importance for widening the color gamut of organic light-emitting diodes (OLEDs). However, most planar MR emitters are vulnerable to intermolecular interactions from both the host and guest, causing spectral broadening and exciton quenching in thin films. Their emission in the solid state is environmentally sensitive, and the color purity is often inferior to that in solutions. Herein, a molecular design strategy is presented that simultaneously narrows the FWHM and suppresses intermolecular interactions by combining intramolecular locking and peripheral shielding within a carbonyl/nitrogen-based MR core. Intramolecularly locking carbonyl/nitrogen-based bears narrower emission of 2,10-dimethyl-12,12-diphenyl-4H-benzo[9,1]quinolizino[3,4,5,6,7-defg]acridine-4,8(12H)-dione in solution and further with peripheral-shielding groups, deep-blue emitter (12,12-diphenyl-2,10-bis(9-phenyl-9H-fluoren-9-yl)-4H-benzo[9,1]quinolizino[3,4,5,6,7-defg]acridine-4,8(12H)-dione, DPQAO-F) exhibits ultra-pure emission with narrow FWHM (c.a., 24 nm) with minimal variations (∆FWHM ≤ 3 nm) from solution to thin films over a wide doping range. An OLED based on DPQAO-F presents a maximum external quantum efficiency (EQEmax) of 19.9% and color index of (0.134, 0.118). Furthermore, the hyper-device of DPQAO-F exhibits a record-high EQEmax of 32.7% in the deep-blue region, representing the first example of carbonyl/nitrogen-based OLED that can concurrently achieve narrow bandwidth in the deep-blue region and a high electroluminescent efficiency surpassing 30%.

3.
Chemosphere ; 359: 142258, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38719119

ABSTRACT

Iron-containing MOFs have attracted extensive interest as promising Fenton-like catalysts. In this work, magnetic Fe3O4 nanofiber (FNS)/MOFs composites with stable structure, included FNS/MIL-88B, FNS/MIL-88A and FNS/MIL-100, were prepared via the in-situ solvothermal method. The surface of the obtained fibers was covered by a dense and continuous MOFs layer, which could effectively solve the agglomeration problem of MOFs powder and improved the catalytic performance. The adsorption and catalytic properties of FNS/MOFs composites were evaluated by removal of norfloxacin. FNS/MIL-88B showed the best performance with a maximum adsorption capacity up to 214.09 mg/g, and could degrade 99% of NRF in 60 min. Meanwhile, FNS/MIL-88B had a saturation magnetization of 20 emu/g, and could be rapidly separated by an applied magnetic field. The self-supported nanofibers allowed the adequate contact between MOFs and pollutants, and promoted the catalytic activity and high stability. We believe that this work provided a new idea for the design and preparation of Fenton-like catalysts especially MOFs composites.


Subject(s)
Iron , Nanofibers , Norfloxacin , Water Pollutants, Chemical , Nanofibers/chemistry , Norfloxacin/chemistry , Adsorption , Iron/chemistry , Water Pollutants, Chemical/chemistry , Catalysis , Metal-Organic Frameworks/chemistry , Hydrogen Peroxide/chemistry
4.
Talanta ; 274: 126026, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38604039

ABSTRACT

Tracking the variation of Cl- timely within the crevice is of great significance for comprehending the dynamic mechanism of crevice corrosion. The reported chloride ion selective electrodes are difficult to realize the long-time Cl- detection inside the confined crevice, due to their millimeter size or a relative limited lifespan. For this purpose, an Ag/AgCl ultra-micro sensor (UMS) with a radius of 12.5 µm was fabricated and optimized using laser drawing and electrodeposition techniques. Results show the AgCl film's structure is significantly impacted by the deposited current density, and further affects the linear response, life span and stability of Ag/AgCl UMS. The UMS prepared at current density of 0.1 mA/cm2 for 2 h shows a rapid response (several seconds), excellent stability and reproducibility, strong acid/alkali tolerance, sufficient linearity (R2 > 0.99), and long lifespan (86 days). Moreover, combined with the potentiometric mode of scanning electrochemical microscope (SECM), the Ag/AgCl UMS was successfully applied to monitor the in-situ radial Cl- concentration in micro-regions inside a 100 µm gap of stainless steel. The findings demonstrated that there was obvious radial difference in Cl- concentration inside the crevice, where the fastest rise in Cl- concentration was at the opening. The proposed method which combines the UMS with SECM has attractive practical applications for microzone Cl- monitoring in real time inside crevice. It may further promote the study of other localized corrosion mechanism and the development of microzone ions detection method.

5.
Chem Commun (Camb) ; 60(41): 5447-5450, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38687569

ABSTRACT

A Prussian blue analogue was synthesized using biomass leather waste as a precursor by doping with Co2+ ions. This material, demonstrates good performance in both the oxygen reduction reaction and oxygen evolution reaction, and exhibits excellent charge-discharge performance and stability in zinc-air batteries.

6.
ACS Nano ; 18(11): 8125-8142, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38451090

ABSTRACT

Osteoarthritis (OA) is a degenerative joint disease characterized by progressive erosion of the articular cartilage and inflammation. Mesenchymal stem cells' (MSCs) transplantation in OA treatment is emerging, but its clinical application is still limited by the low efficiency in oriented differentiation. In our study, to improve the therapeutic efficiencies of MSCs in OA treatment by carbonic anhydrase IX (CA9) siRNA (siCA9)-based inflammation regulation and Kartogenin (KGN)-based chondrogenic differentiation, the combination strategy of MSCs and the nanomedicine codelivering KGN and siCA9 (AHK-CaP/siCA9 NPs) was used. In vitro results demonstrated that these NPs could improve the inflammatory microenvironment through repolarization of M1 macrophages to the M2 phenotype by downregulating the expression levels of CA9 mRNA. Meanwhile, these NPs could also enhance the chondrogenesis of bone marrow-derived mesenchymal stem cells (BMSCs) by upregulating the pro-chondrogenic TGF-ß1, ACAN, and Col2α1 mRNA levels. Moreover, in an advanced OA mouse model, compared with BMSCs alone group, the lower synovitis score and OARSI score were found in the group of BMSCs plus AHK-CaP/siCA9 NPs, suggesting that this combination approach could effectively inhibit synovitis and promote cartilage regeneration in OA progression. Therefore, the synchronization of regulating the inflammatory microenvironment through macrophage reprogramming (CA9 gene silencing) and promoting MSCs oriented differentiation through a chondrogenic agent (KGN) may be a potential strategy to maximize the therapeutic efficiency of MSCs for OA treatment.


Subject(s)
Cartilage, Articular , Mesenchymal Stem Cells , Osteoarthritis , Synovitis , Mice , Animals , Chondrogenesis , Nanomedicine , Osteoarthritis/drug therapy , Cell Differentiation , Inflammation/metabolism , Synovitis/metabolism , RNA, Messenger/metabolism
7.
BMC Surg ; 24(1): 74, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424546

ABSTRACT

BACKGROUND: Nowadays, both lateral mass screw (LMS) and pedicle screw were effective instrumentation for posterior stabilization of cervical spine. This study aims to evaluate the feasibility of a new free-hand technique of C7 pedicle screw insertion without fluoroscopic guidance for cervical spondylotic myelopathy (CSM) patients with C3 to C6 instrumented by lateral mass screws. METHODS: A total of 53 CSM patients underwent lateral mass screws instrumentation at C3 to C6 levels and pedicle screw instrumentation at C7 level were included. The preoperative 3-dimenional computed tomography (CT) reconstruction images of cervical spine were used to determine 2 different C7 pedicle screw trajectories. Trajectory A passed through the axis of the C7 pedicle while trajectory B selected the midpoint of the base of C7 superior facet as the entry point. All these 53 patients had the C7 pedicle screw inserted through trajectory B by free-hand without fluoroscopic guidance and the postoperative CT images were obtained to evaluate the accuracy of C7 pedicle screw insertion. RESULTS: Trajectory B had smaller transverse angle, smaller screw length, and smaller screw width but both similar sagittal angle and similar pedicle height when compared with trajectory A. A total of 106 pedicle screws were inserted at C7 through trajectory B and only 8 screws were displaced with the accuracy of screw placement as high as 92.5%. CONCLUSION: In CSM patients with C3 to C6 instrumented by LMS, using trajectory B for C7 pedicle screw insertion is easy to both identify the entry point and facilitate the rod insertion.


Subject(s)
Pedicle Screws , Spinal Cord Diseases , Spinal Fusion , Humans , Retrospective Studies , Spinal Cord Diseases/diagnostic imaging , Spinal Cord Diseases/surgery , Spinal Fusion/methods , Cervical Vertebrae/diagnostic imaging , Cervical Vertebrae/surgery
8.
Spine (Phila Pa 1976) ; 49(13): 950-955, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38221840

ABSTRACT

STUDY DESIGN: Retrospective comparative study. OBJECTIVE: To investigate the occurrence of neurological complications in patients undergoing thoracic three-column osteotomy (3CO) utilizing an magnetic resonance imaging (MRI)-based classification that assesses spinal cord shape and the presence of cerebrospinal fluid at the curve apex and evaluate its prognostic capacity for postoperative neurological deficits. SUMMARY OF BACKGROUND DATA: Recent advancements in correction techniques have improved outcomes for severe spinal deformity patients undergoing 3CO. A novel MRI-based spinal cord classification system was introduced, but its validation and association with postoperative complications remain unexplored. MATERIALS AND METHODS: Between September 2012 and September 2018, a retrospective analysis was conducted on 158 adult patients with spinal deformities undergoing 3CO. Radiographic parameters were measured. T2-weighted axial MRI was used to describe spinal cord morphology at the apex. Intraoperative neurophysiological monitoring alerts were recorded, and preoperative and postoperative neurological functions were assessed using the Frankel score. Categorical data were compared using the χ 2 or the Fisher exact test. The paired t test was utilized to assess the mean difference between preoperative and postoperative measurements, while the one-way analysis of variance and independent t test were used for comparative analyses among the different spinal cord types. RESULTS: Patients were categorized into three groups: type 1, type 2, and type 3, consisting of 12, 85, and 61 patients. Patients with type 3 morphology exhibited larger Cobb angles of the main curve ( P <0.001). This disparity persisted both postoperatively and during follow-up ( P <0.05). Intraoperative neurophysiological monitoring alerts were triggered in 32 patients (20.3%), with a distribution of one case in type 1, six cases in type 2, and 22 cases in type 3 morphologies ( P <0.001). New neurological deficits were observed in 15 patients (9.5%), with 1, 3, and 11 cases in type 1, 2, and 3 morphologies, respectively. CONCLUSIONS: Patients with type 3 morphology exhibited greater spinal deformity severity, a higher likelihood of preoperative neurological deficits, and an elevated risk of postoperative neurological complications. This underscores the utility of the classification as a tool for predicting postoperative neurological complications in patients undergoing thoracic 3CO. LEVEL OF EVIDENCE: 4.


Subject(s)
Magnetic Resonance Imaging , Osteotomy , Postoperative Complications , Thoracic Vertebrae , Humans , Female , Male , Retrospective Studies , Thoracic Vertebrae/surgery , Thoracic Vertebrae/diagnostic imaging , Adult , Osteotomy/methods , Osteotomy/adverse effects , Magnetic Resonance Imaging/methods , Middle Aged , Postoperative Complications/etiology , Postoperative Complications/diagnostic imaging , Young Adult , Nervous System Diseases/etiology , Nervous System Diseases/diagnostic imaging , Spinal Cord/diagnostic imaging , Spinal Cord/surgery , Aged
9.
Bioresour Technol ; 393: 130169, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38072077

ABSTRACT

The effects of fluctuating organic carbon to nitrogen (C/N) ratios on mainstream simultaneous partial nitrification, anammox, and denitrification (SNAD) process were studied over 376-day period. The nitrogen removal efficiency decreased from 85.0 ± 6.6 % to 75.8 ± 2.8 % as C/N ratio decreased (3.4 â†’ 1.7), but increased to 82.0 ± 1.9 % when C/N ratio raised to 2.9 and to 78.4 ± 3.0 % when C/N ratio decreased again (2.9 â†’ 2.1), indicating that high C/N ratios promoted nitrogen removal. As C/N ratio raised (1.7 â†’ 2.9), anaerobic ammonia-oxidizing bacteria (AnAOB) abundance increased from 1.3 × 109 to 2.0 × 109 copies/L, which explained the improved nitrogen removal. With an elevated C/N ratio, partial nitrification and endogenous partial denitrification reactions were enhanced, providing more nitrite for AnAOB. Additionally, the aerobic_chemoheterotrophy function and particle sizes increased, forming more stable anoxic microenvironment for AnAOB. Overall, increasing C/N ratio promoted the stability of mainstream SNAD.


Subject(s)
Ammonia , Denitrification , Sewage/microbiology , Nitrogen/analysis , Carbon , Anaerobiosis , Anaerobic Ammonia Oxidation , Bioreactors/microbiology , Oxidation-Reduction , Nitrification
10.
Adv Ther ; 41(1): 391-412, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37987918

ABSTRACT

INTRODUCTION: Venous thromboembolism (VTE) consists of deep vein thrombosis (DVT) and pulmonary embolism (PE). Rivaroxaban is a direct oral anticoagulant (DOAC) inhibiting activated coagulation factor X (FXa), and exerts several advantages in the treatment of VTE compared to conventional therapy. However, the efficacy and safety of rivaroxaban in elderly patients with VTE was still poorly understood. METHODS: The study was carried out using an observational and non-interventional approach. A total of 576 patients aged ≥ 60 years with newly diagnosed VTE were included in the study. All patients received rivaroxaban with recommended treatment duration of ≥ 3 months for secondary prevention. In addition, 535 elderly patients with various diseases except VTE were included in the study in a retrospective and randomized way. RESULTS: The total bleeding rate was 12.2% (70/576). Major bleeding and non-major clinically relevant (NMCR) bleeding occurred in 4 (0.69%) patients and 5 (0.87%) patients, respectively. The rate of recurrent VTE was 5.4%. The mean level of D-dimers was increased by 467.2% in the elderly patients with VTE compared with the elderly patients without VTE. The elderly patients with VTE receiving rivaroxaban at a dose of 10 mg once daily (n = 134) had lower risk for bleeding (3.7% vs 14.7%; P = 0.001) and a similar rate of recurrent VTE (4.5% vs 5.7%; P = 0.596) as compared to the elderly patients with VTE receiving rivaroxaban at higher doses including 15 mg once daily and 20 mg once daily (n = 442). In addition, age, concomitant aspirin, hemoglobin, activated partial thromboplastin time (APTT), and rivaroxaban doses were independent predictive factors for bleeding events. CONCLUSIONS: The study suggested that a dose of 10 mg once daily should be the priority in elderly patients with VTE receiving long-term rivaroxaban anticoagulation therapy in view of reduced bleeding risk.


Subject(s)
Pulmonary Embolism , Venous Thromboembolism , Aged , Humans , Anticoagulants/adverse effects , Cohort Studies , Hemorrhage/chemically induced , Hemorrhage/drug therapy , Pulmonary Embolism/diagnosis , Pulmonary Embolism/drug therapy , Retrospective Studies , Risk Factors , Rivaroxaban/adverse effects , Treatment Outcome , Venous Thromboembolism/drug therapy , Venous Thromboembolism/prevention & control
11.
Nanoscale ; 15(47): 19079-19084, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38009073

ABSTRACT

Four group 10 metal nanoclusters, Ni10(4-MePhS)20, Ni11(PhS)22, Pd9(PhS)18 and Pd10(PhS)20 were synthesized from disulfides based on a photochemical reduction-oxidation cascade process, which proceeds via a different mechanism to that of the conventional two-step reduction process. The as-obtained nanoclusters possess oxidative resistance and structural robustness under different conditions. Their atomically precise structures are determined to be nickel or palladium rings in which the metal atoms are bridged by Ar-S groups. Their catalytic performance in oxygen reduction reaction was compared, and the ring size-dependent catalytic activity of the group 10 metal nanoclusters was revealed. This work provides an efficient route to atomically precise and structurally stable group 10 metal nanoclusters, and sheds light on their further applications in electrocatalysis.

12.
Sci Total Environ ; 904: 166867, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37678536

ABSTRACT

Hydroponics is a resource-efficient system that increases food production and enhances the overall sustainability of agricultural systems, particularly in arid zones with prevalent water scarcity and limited areas of arable land. This study investigated zero-waste hydroponics systems fed by agricultural waste streams as nutrient sources under desert conditions. Three pilot-scale systems were tested and compared. The first hydroponics system ("HPAP") received its nutrient source internally from an aquaponic system, including supernatant from the anaerobic digestion of fish sludge. The second system ("HPAD") was sourced by the supernatant of plant waste anaerobic digestion, and the third served as a control that was fed by commercial Hoagland solution ("HPHS"). Fresh weight production was similar in all treatments, ranging from 488 to 539 g per shoot, corresponding to 5.7 to 6.0 kg total wet weight per m2. The recovery of N and P from wastes and their subsequent uptake by plants was highly efficient, with rates of 77 % for N and 65 % for P. Plants that were fed using supernatants demonstrated slightly higher plant quality compared with those grown in Hoagland solution. Over the duration of the full study (3 months), water was only used to compensate for evapotranspiration, corresponding to ~10 L per kg of lettuce. The potential health risk for heavy metals was negligible, as assessed using the health-risk index (HRI < 1) and targeted hazardous quotient (THQ < 1). The results of this study demonstrate that careful management can significantly reduce pollution, increase the recovery of nutrients and water, and improve hydroponics production.


Subject(s)
Aquaculture , Water , Animals , Hydroponics/methods , Anaerobiosis , Aquaculture/methods , Nutrients
13.
Environ Sci Pollut Res Int ; 30(48): 106421-106430, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37728675

ABSTRACT

As a sustainable management of fossil fuel resources and ecological environment protection, recycling used lubricating oil has received widespread attention. However, large amounts of waste lubricating-oil regeneration wastewater (WLORW) are inevitably produced in the recycling process, and challenges are faced by traditional biological treatment of WLORW. Thus, this study investigated the effectiveness of electrocoagulation (EC) as pretreatment and its removal mechanism. The electrolysis parameters (current density, initial pH, and inter-electrode distance) were considered, and maximal 60.06% of oil removal was achieved at a current density of 15 mA/cm2, initial pH of 7, and an inter-electrode distance of 2 cm. The dispersed oil of WLORW was relatively easily removed, and most of the oil removal was contributed by emulsified oil within 5-10 µm. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that effective removal of the biorefractory organic compounds could contribute to the improvement of biodegradability of WLORW. Thus, the 5-day biochemical oxygen demand/chemical oxygen demand ratio (BOD5/COD) was significantly enhanced by 4.31 times, which highly benefits future biological treatment. The routes of WLORW removal could be concluded as charge neutralization, adsorption bridging, sweep flocculation, and air flotation. The results demonstrate that EC has potential as an effective pretreatment technology for WLORW biological treatment.


Subject(s)
Wastewater , Water Pollutants, Chemical , Waste Disposal, Fluid/methods , Industrial Waste/analysis , Electrocoagulation/methods , Oils , Electrodes , Biological Oxygen Demand Analysis , Water Pollutants, Chemical/analysis
14.
Nano Lett ; 23(16): 7508-7515, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37477210

ABSTRACT

Practical approaches to the synthesis of atomically precise metal nanoclusters are in high demand as they provide the structural basis for investigating nanomaterials' structure-property correlations with atomic precision. The Brust-Schiffrin method has been widely used, while the essential reductive ligands (e.g., thiols) limit the application of this method for synthesizing metal nanoclusters with specific frameworks and surface ligands. In this work, we developed a photochemical route for synthesizing atomically precise metal nanoclusters by applying disulfide, which is a widely available, stable, and environmentally friendly sulfur source. This method enables the construction of structurally diverse metal nanoclusters and especially features the synthesis of PhS-protected metal nanoclusters that were not easily achieved previously and the gram-scale synthesis. A reduction-oxidation cascade mechanism has been revealed for the photochemical route. This work is expected to open up new opportunities for metal nanocluster synthesis and will contribute to the practical applications of this kind of nanomaterial.

15.
Int J Ophthalmol ; 16(6): 884-890, 2023.
Article in English | MEDLINE | ID: mdl-37332541

ABSTRACT

AIM: To evaluate optic nerve head (ONH) vessel density (VD) changes after cataract surgery using optical coherence tomography angiography (OCTA). METHODS: This was a prospective observational study. Thirty-four eyes with mild/moderate cataracts were included. ONH scans were obtained before and 3mo after cataract surgery using OCTA. Radial peripapillary capillary (RPC) density, all VD, large VD and retinal nerve fiber layer thickness (RNFLT) in total disc, inside disc, and different peripapillary sectors were assessed and analyzed. Image quality score (QS), fundus photography grading and best-corrected visual acuity (BCVA) were also collected, and correlation analyses were performed between VD change and these parameters. RESULTS: Compared with baseline, both RPC and all VD increased in inside disc area 3mo postoperatively (from 47.5%±5.3% to 50.2%±3.7%, and from 57.87%±4.30% to 60.47%±3.10%, all P<0.001), but no differences were observed in peripapillary area. However, large VD increased from 5.63%±0.77% to 6.47%±0.72% in peripapillary ONH region (P<0.001). RPC decreased in inferior and superior peripapillary ONH parts (P=0.019, <0.001 respectively). There were obvious negative correlations between RPC change and large VD change in inside disc, superior-hemi, and inferior-hemi (r=-0.419, -0.370, and -0.439, P=0.017, 0.044, and 0.015, respectively). No correlations were found between VD change and other parameters including QS change, fundus photography grading, postoperative BCVA, and postoperative peripapillary RNFLT. CONCLUSION: RPC density and all VD in the inside disc ONH region increase 3mo after surgery in patients with mild to moderate cataract. No obvious VD changes are found in peripapillary area postoperatively.

16.
J Am Chem Soc ; 145(22): 12164-12172, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37235477

ABSTRACT

Atomically precise metal nanoclusters have received tremendous attention due to their unique structures and properties. Although synthetic approaches to this kind of nanomaterial have been well developed, methods toward precision functionalization of the as-synthesized metal nanoclusters are extremely limited, hindering their interfacial modification and related performance improvement. Herein, an amidation strategy has been developed for the precision functionalization of the Au11 nanocluster based on preorganized nitrogen sites. The nanocluster amidation did not change the number of gold atoms in the Au11 kernel and their bonding mode to the surface ligands but slightly modified the arrangement of gold atoms with the introduction of functionality and chirality, thus representing a relatively mild method for the modification of metal nanoclusters. The stability and oxidation barrier of the Au11 nanocluster are also improved accordingly. The method developed here would be a generalizable strategy for the precision functionalization of metal nanoclusters.

17.
Angew Chem Int Ed Engl ; 62(10): e202215226, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36593222

ABSTRACT

Rationally tuning the emission position and narrowing the full width at half-maximum (FWHM) of an emitter is of great importance for many applications. By synergistically improving rigidity, strengthening the resonant strength, inhibiting molecular bending and rocking, and destabilizing the HOMO energy level, a deep-blue emitter (CZ2CO) with a peak wavelength of 440 nm and an ultranarrow spectral FWHM of 16 nm (0.10 eV) was developed via intramolecular cyclization in a carbonyl/N resonant core (QAO). The dominant υ0-0 transition character of CZ2CO gives a Commission Internationale de I'Éclairage coordinates (CIE) of (0.144, 0.042), nicely complying with the BT.2020 standard. Moreover, a hyper-fluorescent device based on CZ2CO shows a high maximum external quantum efficiency (EQEmax ) of 25.6 % and maintains an EQE of 22.4 % at a practical brightness of 1000 cd m-2 .

18.
ACS Chem Neurosci ; 14(1): 170-179, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36547971

ABSTRACT

Blood-based biomarkers have been considered as a promising method for the diagnosis of Alzheimer's disease (AD). The reliability and accuracy of plasma core AD biomarkers, including phosphorylated tau (P-tau181), total tau (T-tau), Aß42, and Aß40, have also been confirmed in diagnosing AD and predicting cerebral ß-amyloid (Aß) deposition in Western populations, while fewer research studies have ever been conducted in China's Han population. In this study, we investigated the capability of plasma core AD biomarkers in predicting cerebral Aß deposition burden among the China Aging and Neurodegenerative Disorder Initiative (CANDI) cohort consisting of cognitively normal (CN), mild cognitive impairment (MCI), AD dementia, and non-Alzheimer's dementia disease (Non-ADD). Body fluid (plasma and CSF) AD core biomarkers were measured via single-molecule array (Simoa) immunoassay. The global standard uptake value ratio (SUVR) was then calculated by 18F-florbetapir PET, which was divided into positive (+) and negative (-). The most significant correlation between plasma and CSF was plasma P-tau181 (r = 0.526, P < 0.0001). Plasma P-tau181 and P-tau181/T-tau ratio were positively correlated with global SUVR (r = 0.257, P < 0.0001; r = 0.263, P < 0.0001, respectively), while Aß42 and Aß42/Aß40 ratio were negatively correlated with global SUVR (r = -0.346, P < 0.0001; r = -0.407, P < 0.0001, respectively). Interestingly, voxel-wise analysis showed that plasma P-tau181 and P-tau181/T-tau ratio were negatively related to 18F-florbetapir PET in the hippocampus and parahippocampal cortex. The optimal predictive capability in distinguishing all Aß+ participants from Aß- participants and MCI+ from MCI- subgroups was the plasma P-tau181/T-tau ratio (AUC = 0.825 and 0.834, respectively). Our study suggested that plasma P-tau181 and P-tau181/T-tau ratio possessed better diagnostic and predictive values than plasma Aß42 and Aß42/Aß40 in this cohort, a finding that may be useful in clinical practices and trials in China.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnostic imaging , Reproducibility of Results , East Asian People , tau Proteins , Amyloid beta-Peptides , Cognitive Dysfunction/diagnostic imaging , Positron-Emission Tomography/methods , Biomarkers
19.
Bioact Mater ; 24: 96-111, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36582346

ABSTRACT

Wound healing has become one of the basic issues faced by the medical community because of the susceptibility of skin wounds to bacterial infection. As such, it is highly desired to design a nanocomposite hydrogel with excellent antibacterial activity to achieve high wound closure effectiveness. Here, based on ultrasound-triggered piezocatalytic therapy, a multifunctional hydrogel is designed to promote bacteria-infected wound healing. Under ultrasonic vibration, the surface of barium titanate (BaTiO3, BT) nanoparticles embedded in the hydrogel rapidly generate reactive oxygen species (ROS) owing to the established strong built-in electric field, endowing the hydrogel with superior antibacterial efficacy. This modality shows intriguing advantages over conventional photodynamic therapy, such as prominent soft tissue penetration ability and the avoidance of serious skin phototoxicity after systemic administration of photosensitizers. Moreover, the hydrogel based on N-[tris(hydroxymethyl)methyl]acrylamide (THM), N-(3-aminopropyl)methacrylamide hydrochloride (APMH) and oxidized hyaluronic acid (OHA) exhibits outstanding self-healing and bioadhesive properties able to accelerate full-thickness skin wound healing. Notably, compared with the widely reported mussel-inspired adhesive hydrogels, OHA/THM-APMH hydrogel due to the multiple hydrogen bonds from unique tri-hydroxyl structure overcomes the shortage that catechol groups are easily oxidized, giving it long-term and repeatable adhesion performance. Importantly, this hybrid hydrogel confines BT nanoparticles to wound area and locally induced piezoelectric catalysis under ultrasound to eradicate bacteria, markedly improving the therapeutic biosafety and exhibits great potential for harmless treatment of bacteria-infected tissues.

20.
Angew Chem Int Ed Engl ; 62(6): e202214281, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36314420

ABSTRACT

The development of photoinduced luminescent radicals with dynamic emission color is still challenging. Herein we report a novel molecular radical system (TBIQ) that shows photo-controllable luminescence, leading to a wide range of ratiometric color changes via light excitation. The conjugated skeleton of TBIQ is decorated with steric-demanding tertiary butyl groups that enable appropriate intermolecular interaction to make dynamic intermolecular coupling possible for controllable behaviors. We reveal that the helicenic pseudo-planar conformation of TBIQ experiences a planarization process after light excitation, leading to more compactly stacked supermolecules and thus generating radicals via intermolecular charge transfer. The photo-controllable luminescent radical system is employed for a high-level information encryption application. This study may offer unique insight into molecular dynamic motion for optical manufacturing and broaden the scope of smart-responsive materials for advanced applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...