Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Nano ; 18(12): 9232-9241, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38466082

ABSTRACT

Due to the strong interlayer coupling between multiple degrees of freedom, oxide heterostructures have demonstrated exotic properties that are not shown by their bulk counterparts. One of the most interesting properties is ferromagnetism at the interface formed between "nonferromagnetic" compounds. Here we report on the interfacial ferromagnetic phase induced in the superlattices consisting of the two paramagnetic oxides CaRuO3 (CRO) and LaNiO3 (LNO). By varying the sublayer thickness in the superlattice period, we demonstrate that the ferromagnetic order has been established in both CaRuO3 and LaNiO3 sublayers, exhibiting an identical Curie temperature of ∼75 K. The X-ray absorption spectra suggest a strong charge transfer from Ru to Ni at the interface, triggering superexchange interactions between Ru/Ni ions and giving rise to the emergent ferromagnetic phase. Moreover, the X-ray linear dichroism spectra reveal the preferential occupancy of the d3z2-r2 orbital for the Ru ions and the dx2-y2 orbital for the Ni ions in the heterostructure. This leads to different magnetic anisotropy of the superlattices when they are dominated by CRO or LNO sublayers. This work clearly demonstrates a charge-transfer-induced interfacial ferromagnetic phase in the whole ferromagnet-free oxide heterostructures, offering a feasible way to tailor oxide materials for desired functionalities.

2.
Nano Lett ; 24(13): 3961-3970, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38526195

ABSTRACT

Developing a high-performance membrane electrode assembly (MEA) poses a formidable challenge for fuel cells, which lies in achieving both high metal loading and efficient catalytic activity concurrently for MEA catalysts. Here, we introduce a porous Co@NC carrier to synthesize sub-4 nm PtCo intermetallic nanocrystals, achieving an impressive Pt loading of 27 wt %. The PtCo-CoNC catalyst demonstrates exceptional catalytic activity and remarkable stability for the oxygen reduction reaction. Advanced characterization techniques and theoretical calculations emphasize the synergistic effect between PtCo alloys and single Co atoms, which enhances the desorption of the OH* intermediate. Furthermore, the PtCo-CoNC-based cathode delivers a high power density of 1.22 W cm-2 in the MEA test owing to the enhanced mass transport, which is verified by the simulation results of the O2 distributions and current density inside the catalyst layer. This study lays the groundwork for the design of efficient catalysts with practical applications in fuel cells.

3.
Small ; : e2308172, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38037707

ABSTRACT

Artificial oxide heterostructures have provided promising platforms for the exploration of emergent quantum phases with extraordinary properties. One of the most interesting phenomena is the interfacial magnetism formed between two non-magnetic compounds. Here, a robust ferromagnetic phase emerged at the (111)-oriented heterointerface between paramagnetic CaRuO3 and diamagnetic SrTiO3 is reported. The Curie temperature is as high as ≈155 K and the saturation magnetization is as large as ≈1.3 µB per formula unit for the (111)-CaRuO3 /SrTiO3 superlattices, which are obviously superior to those of the (001)-oriented counterparts and are comparable to the typical itinerant ferromagnet SrRuO3 . A strong in-plane magnetic anisotropy with six-fold symmetry is further revealed by the anisotropic magnetoresistance measurements, presenting a large in-plane anisotropic field of 3.0-3.6 T. More importantly, the magnetic easy axis of the (111)-oriented superlattices can be effectively tuned from 〈 11 2 ¯ $11\overline{2}$ 1〉 to 〈 1 1 ¯ 0 $1 \bar{1}0$ 〉 directions by increasing the layer thickness of SrTiO3 . The findings demonstrate a feasible approach to enhance the interface coupling effect by varying the stacking orientation of oxide heterostructures. The tunable magnetic anisotropy also shows potential applications in low-power-consumption or exchange spring devices.

4.
Endocr Connect ; 12(8)2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37183928

ABSTRACT

Background: Diabetic kidney disease (DKD) has become a major cause of chronic kidney disease. However, early diagnosis of DKD is challenging. Trimethylamine oxide (TMAO) is an intestinal microbial metabolite which might be associated with diabetes complications. The aim of this study was to investigate the correlation between TMAO and DKD. Methods: A cross-sectional study was conducted. A total of 108 T2DM patients and 33 healthy subjects were enrolled in this study. Multiple logistic regression analyses and area under receiver operating characteristic curves (AUROC) were performed to evaluate the correlation between serum TMAO and DKD. Results: Serum TMAO levels were significantly higher in DKD patients than healthy control group and the NDKD (T2DM without combined DKD) group (P < 0.05). TMAO levels were negatively correlated with eGFR and positively correlated with urea nitrogen, ACR and DKD (P < 0.05). Logistic regression analysis indicated that serum TMAO was one of the independent risk factors for DKD patients (P < 0.05). In the diagnostic model, the AUROC of TMAO for the diagnosis of DKD was 0.691. Conclusion: Elevated levels of serum TMAO levels were positively associated with the risk of DKD in T2DM patients, which might be a potential biomarker for DKD.

5.
Adv Mater ; 35(20): e2211164, 2023 May.
Article in English | MEDLINE | ID: mdl-36856016

ABSTRACT

The study of topology in quantum materials has fundamentally advanced the understanding in condensed matter physics and potential applications in next-generation quantum information technology. Recently, the discovery of a topological Chern phase in the spin-orbit-coupled Kagome lattice TbMn6 Sn6 has attracted considerable interest. Whereas these phenomena highlight the contribution of momentum space Berry curvature and Chern gap on the electronic transport properties, less is known about the intrinsic real space magnetic texture, which is crucial for understanding the electronic properties and further exploring the unique quantum behavior. Here, the stabilization of topological magnetic skyrmions in TbMn6 Sn6 using Lorentz transmission electron microscopy near room temperature, where the spins experience full spin reorientation transition between the a- and c-axes, is directly observed. An effective spin Hamiltonian based on the Ginzburg-Landau theory is constructed and micromagnetic simulation is performed to clarify the critical role of Ruderman-Kittel-Kasuya-Yosida interaction on the stabilization of skyrmion lattice. These results not only uncover nontrivial spin topological texture in TbMn6 Sn6 , but also provide a solid basis to study its interplay with electronic topology.

6.
Small ; 18(38): e2203495, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35989102

ABSTRACT

Atomically dispersed iron immobilized on nitrogen-doped carbon catalyst has attracted enormous attention for CO2 electroreduction, but still suffers from low current density and poor selectivity. Herein, atomically dispersed FeN5 active sites supported on defective N-doped carbon successfully formed by a multistep thermal treatment strategy with the aid of dicyandiamide are reported. This dual-functional strategy can not only construct intrinsic carbon defects by selectively etching pyridinic-N and pyrrolic-N, but also introduces an additional N from the neighboring carbon layer coordinating to the commonly observed FeN4 , thus creating an FeN5 active site supported on defective porous carbon nanofibers (FeN5 /DPCF) with a local 3D configuration. The optimized FeN5 /DPCF achieves a high CO Faradaic efficiency (>90%) over a wide potential range of -0.4 to -0.6 V versus RHE with a maximal FECO of 93.1%, a high CO partial current density of 9.4 mA cm-2 at the low overpotential of 490 mV, and a remarkable turnover frequency of 2965 h-1 . Density functional theory calculations reveal that the synergistic effect between the FeN5 sites and carbon defects can enhance electronic localization, thus reducing the energy barrier for the CO2 reduction reaction and suppressing the hydrogen evolution reaction, giving rise to the superior activity and selectivity.

7.
Adv Mater ; 32(38): e1907452, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32743868

ABSTRACT

Magnetic skyrmions are attracting interest as efficient information-storage devices with low energy consumption, and have been experimentally and theoretically investigated in multilayers including ferromagnets, ferrimagnets, and antiferromagnets. The 3D spin texture of skyrmions demonstrated in ferromagnetic multilayers provides a powerful pathway for understanding the stabilization of ferromagnetic skyrmions. However, the manipulation mechanism of skyrmions in antiferromagnets is still lacking. A Hall balance with a ferromagnet/insulating spacer/ferromagnet structure is considered to be a promising candidate to study skyrmions in synthetic antiferromagnets. Here, high-density Néel-type skyrmions are experimentally observed at zero field and room temperature by Lorentz transmission electron microscopy in a Hall balance (core structure [Co/Pt]n /NiO/[Co/Pt]n ) with interfacial canted magnetizations because of interlayer ferromagnetic/antiferromagnetic coupling between top and bottom [Co/Pt]n multilayers, where the Co layers in [Co/Pt]n are always ferromagnetically coupled. Micromagnetic simulations show that the generation and density of skyrmions are strongly dependent on interlayer exchange coupling (IEC) and easy-axis orientation. Direct experimental evidence of skyrmions in synthetic antiferromagnets is provided, suggesting that the proposed approach offers a promising alternative mechanism for room-temperature spintronics.

8.
ACS Appl Mater Interfaces ; 11(28): 25569-25577, 2019 Jul 17.
Article in English | MEDLINE | ID: mdl-31264829

ABSTRACT

Electric-field control of magnetism (EFCM) is very important for the exploration of high-density, fast, and nonvolatile random-access memory with ultralow energy consumption. Here, we report the electric-field-induced ferroelectric phase transitions in Pb(Mg1/3Nb2/3)0.82Ti0.18O3 (PMN-0.18PT) and symmetry breaking of EFCM behaviors for corresponding directions in multiferroic heterostructures composed of amorphous ferromagnetic Co40Fe40B20 (CoFeB) and PMN-0.18PT. We uncover a new mechanism behind the unusual phenomena, involving coupling between CoFeB and PMN-0.18PT via complex cooperation of electric-field-induced ferroelectric phase transitions, competition of different ferroelectric domains, and internal electric field in PMN-0.18PT. The deterministic EFCM with reversible and nonvolatile nature opens up a new avenue for exploring EFCM in multiferroic heterostructures and is also significant for applications.

9.
ACS Appl Mater Interfaces ; 7(30): 16223-30, 2015 Aug 05.
Article in English | MEDLINE | ID: mdl-26151195

ABSTRACT

Copper nanowires (CuNWs) with ultrahigh aspect ratio are synthesized with a solution process and spray-coated onto select substrates to fabricate transparent conductive electrodes (TCEs). Different annealing methods are investigated and compared for effectiveness and convenience. The CuNWs are subsequently combined with the conductive polymer poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) ( PEDOT: PSS) or with reduced graphene oxide (rGO) platelets in order to reduce the surface roughness and improve the durability of the fabricated TCEs. Our best-performing PEDOT: PSS/CuNW films have optical transmittance T550 = 84.2% (at λ = 550 nm) and sheet resistance Rs = 25 Ω/sq, while our best CuNW/rGO films have T550 = 84% and Rs = 21.7 Ω/sq.

10.
Nanotechnology ; 24(47): 475705, 2013 Nov 29.
Article in English | MEDLINE | ID: mdl-24177005

ABSTRACT

We demonstrate that core/graded-shell CdSe/CdSe1-xSx/CdS giant semiconductor nanocrystals (g-NCs) have robust photoluminescence (PL) temperature response. At a size of 10.2 nm in diameter, these g-NCs undergo a PL drop of only 30% at 355 K relative to their PL intensity at 85 K. In comparison, the core/step-shell CdSe/CdS g-NCs at the same diameter exhibit 80% PL drop at 355 K. Spectral shifting and broadening were found to be, respectively, 5-10 times and 2-4 times smaller than those observed in standard CdSe core and CdSe/CdS core/shell NCs. These core/graded-shell g-NCs are largely blinking suppressed and have insignificant photoluminescence decay even after excitation at very high irradiance (44 kW cm(-2)) for over an hour. These types of g-NC have potential applications as the active medium for thermally robust laser devices (in the visible range) or as temperature-insensitive bioprobes for biomedical imaging.

SELECTION OF CITATIONS
SEARCH DETAIL
...