Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Adv Sci (Weinh) ; : e2401575, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767189

ABSTRACT

Practical aqueous zinc-ion batteries require low-cost thin zinc anodes with long-term reversible stripping/depositing. However, thin zinc anodes encounter more severe issues than thick zinc, such as dendrites and uneven stripping, resulting in subpar performance and limited lifetimes. Here, this work proposes a three-in-one zinc anode obtained by a large-scale two-step method to address the above issues. In a three-in-one zinc anode, the copper foil as an inactive current collector solves the gradual reduction of the active area when only the pure zinc as an active current collector. This work develops an automatic electroplating device that can continuously deposit a zinc layer on a conducting foil to meet the demand for zinc-coated copper foils. The sodium carboxymethylcellulose (CMC)-zinc fluoride (ZnF2) protective layer prevents direct contact between zinc and separator, and provides a uniform and sufficient supply of zinc ions. The CMC-ZnF2-coated copper foil performs up to 3000 reversible zinc deposition/stripping cycles with a cumulative capacity of 6 Ah cm-2 and an average Coulombic efficiency of 99.94%. The Zn||ZnVO cell using the three-in-one anode achieved a high capacity retention of over 70% after 15 000 cycles. The proposed three-in-one anode and the automatic electroplating device will facilitate industrialization of practical thin zinc anodes.

2.
Aging (Albany NY) ; 16(4): 3915-3933, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38385949

ABSTRACT

BACKGROUND: Clear cell carcinoma (ccRCC) usually has a high metastasis rate and high mortality rate. To enable precise risk stratification, there is a need for novel biomarkers. As one form of apoptosis, anoikis results from the disruption of cell-cell connection or cell-ECM attachment. However, the impact of anoikis-related lncRNAs on ccRCC has not yet received adequate attention. METHODS: The study utilized univariate Cox regression analysis in order to identify the overall survival (OS) associated anoikis-related lncRNAs (ARLs), followed by the LASSO algorithm for selection. On this basis, a risk model was subsequently established using five anoikis-related lncRNAs. To dig the inner molecular mechanism, KEGG, GO, and GSVA analyses were conducted. Additionally, the immune infiltration landscape was estimated using the ESTIMATE, CIBERSORT, and ssGSEA algorithms. RESULTS: The study constructed a novel risk model based on five ARLs (AC092611.2, AC027601.2, AC103809.1, AL133215.2, and AL162586.1). Patients categorized as low-risk exhibited significantly better OS. Notably, the study observed marked different immune infiltration landscapes and drug sensitivity by risk stratification. Additionally, the study preliminarily explored potential signal pathways associated with risk stratification. CONCLUSION: The study exhibited the crucial role of ARLs in the carcinogenesis of ccRCC, potentially through differential immune infiltration. Furthermore, the established risk model could serve as a valuable stratification factor for predicting OS prognosis.


Subject(s)
Carcinoma, Renal Cell , Carcinoma , Kidney Neoplasms , RNA, Long Noncoding , Humans , Carcinoma, Renal Cell/genetics , Anoikis/genetics , RNA, Long Noncoding/genetics , Prognosis , Kidney Neoplasms/genetics
3.
Small ; 20(15): e2307357, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38012538

ABSTRACT

Hydrogen reduction reaction (HER) and corrosion limit the long-life cycle of zinc-ion batteries. However, hydrophilic separators are unable to prevent direct contact between water and electrodes, and hydrophobic separators have difficulty in transporting electrolytes. In this work, an inorganic oxide-based "hydrophobic-hydrophilic-hydrophobic" self-assembled separator system is proposed. The hydrophobic layer consists of a porous structure, which can isolate a large amount of free water to avoid HER and corrosion reactions, and can transport electrolyte by binding water. The middle hydrophilic layer acts as a storage layer consisting of the GF separator, storing large amounts of electrolyte for proper circulation. By using this structure separator, Zn||Zn symmetric cell achieve 2200 h stable cycle life at 5 mA cm-2 and 1mAh cm-2 and still shows a long life of 1800 h at 10 mA cm-2 and 1mAh cm-2. The assembled Zn||VO2 full cell displays high specific capacity and excellent long-term durability of 60.4% capacity retention after 1000 cycles at 2C. The assembled Zn||VO2 pouch full cell displays high specific capacity of 172.5mAh g-1 after 40 cycles at 0.5C. Changing the inorganic oxide materials, the hydrophobic-hydrophilic-hydrophobic structure of the separators still has excellent performance. This work provides a new idea for the engineering of water-based battery separators.

4.
Int Immunopharmacol ; 126: 111275, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37995567

ABSTRACT

BACKGROUND: Sepsis is a common critical condition seen in clinical settings, with mitochondrial dysfunction playing an important role in the progression of sepsis. However, a mitochondrial prognosis model related to sepsis has not been established yet, and the relationship between the sepsis immune microenvironment and mitochondria remains unclear. METHODS: Sepsis prognostic mitochondria-associated genes (MiAGs) were screened by univariate Cox, multivariate Cox, and LASSO analysis from the GEO dataset. Consensus Cluster was used to analyze MiAGs-based molecular subtypes for sepsis. The ESTIMATE and ssGSEA algorithms were used to analyze the situation of sepsis immune cell infiltration and its relation to MiAGs. Further, MiAGs score was calculated to construct a sepsis prognosis risk model to predict the prognosis of sepsis patients. Clinical blood samples were used to investigate the expression level of selected MiAGs in sepsis. Single-cell sequencing analysis, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), and ATP detection were used to verify the influence of MiAGs on mitochondrial dysfunction in sepsis. RESULTS: A total of 5 MiAGs of sepsis were screened. Based on MiAGs, sepsis MiAGs subtypes were analyzed, where Cluster A had a better prognosis than Cluster B, and there were significant differences in immune infiltration between the two clusters. The sepsis mitochondrial prognosis model suggested that the high MiAG score group had a shorter survival time compared to the low MiAG score group. Significant differences were also observed in the immune microenvironment between the high and low MiAG score groups. Prognostic analysis and the Nomogram indicated that the MiAG score is an independent prognostic factor in sepsis. Single-cell sequencing analysis exhibited the possible influence of MiAGs on the mitochondrial function of monocytes. Finally, the downregulation of the COX7B could effectively improve mitochondrial function in the LPS-stimulated sepsis model. CONCLUSION: Our findings suggest that MiAGs can be used to predict the prognosis of sepsis and that regulating the mitochondrial prognostic gene COX7B can effectively improve the mitochondrial function of immune cells in sepsis.


Subject(s)
Mitochondrial Diseases , Sepsis , Humans , Prognosis , DNA, Mitochondrial , Mitochondria , Sepsis/genetics , Tumor Microenvironment
5.
Antioxidants (Basel) ; 12(7)2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37508011

ABSTRACT

A novel antioxidant containing four hydroxyl groups, namely 2,2'-(2-methylpropane-1,3-diyl)bis(hydroquinone) (MPBHQ), was synthesized using hydroquinone and methylallyl alcohol as the raw materials, phosphoric acid as the catalyst, and toluene as the solvent system. The structure of MPBHQ was characterized by mass spectrometry, nuclear magnetic resonance, ultraviolet spectroscopy, and infrared spectroscopy. The results showed that MPBHQ has a good radical scavenging effect, as measured by the ORAC assay, DPPH radical scavenging assay, ABST radical scavenging assay, and Rancimat test. In fatty acid methyl ester and lard without exogenous antioxidants, MPBHQ showed better antioxidant performance than butylated hydroxytoluene (BHT), hydroquinone (HQ), tert-butyl hydroquinone (TBHQ), and propyl gallate (PG), meeting the need for a new antioxidant with better properties to ensure the oxidative stability of lipids and biodiesel.

6.
Adv Mater ; 35(26): e2300620, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36946149

ABSTRACT

Aqueous Zn-ion batteries are plagued by a short lifespan caused by localized dendrites. High-concentration electrolytes are favorable for dense Zn deposition but have poor performance in batteries with glass-fiber separators. In contrast, low-concentration electrolytes can wet the separators well, ensuring the migration of zinc ions, but the dendrites grow rapidly. In this work, we propose an electrolyte gradient strategy wherein a zinc-ion concentration gradient is established from the anode to the separator, ensuring that the separator keeps a good wettability in low-concentration areas and the zinc anode achieves dendrite-free deposition in a high-concentration area. By using this strategy in a common electrolyte, zinc sulfate, a Zn||Zn symmetric cell achieves 14 000 ultralong cycles (exceeding 8 months) at 5 mA cm-2 and 1 mAh cm-2 . When the current is further increased to 20 mA cm-2 , the symmetric cell could still run for over 10 000 cycles. Assembled Zn||NVO full cells also demonstrate prominent performance. At a high current of 16 mA cm-2 , the NVO cathode with high loading (8 mg cm-2 ) still has a capacity of 58% after 1200 cycles. Overall, the gradient electrolyte strategy provides a promising approach for practical long-life Zn anodes with the advantages of simple operation and low cost.

7.
Neural Regen Res ; 18(8): 1802-1808, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36751809

ABSTRACT

Spinal cord injury causes accumulation of a large number of leukocytes at the lesion site where they contribute to excessive inflammation. Overproduced chemokines are responsible for the migratory process of the leukocytes, but the regulatory mechanism underlying the production of chemokines from resident cells of the spinal cord has not been fully elucidated. We examined the protein levels of macrophage migration inhibitory factor and chemokine C-C motif chemokine ligand 2 in a spinal cord contusion model at different time points following spinal cord injury. The elevation of macrophage migration inhibitory factor at the lesion site coincided with the increase of chemokine C-C motif chemokine ligand 2 abundance in astrocytes. Stimulation of primary cultured astrocytes with different concentrations of macrophage migration inhibitory factor recombinant protein induced chemokine C-C motif chemokine ligand 2 production from the cells, and the macrophage migration inhibitory factor inhibitor 4-iodo-6-phenylpyrimidine attenuated the stimulatory effect. Further investigation into the underlying mechanism on macrophage migration inhibitory factor-mediated astrocytic production of chemokine C-C motif chemokine ligand 2 revealed that macrophage migration inhibitory factor activated intracellular JNK signaling through binding with CD74 receptor. Administration of the macrophage migration inhibitory factor inhibitor 4-iodo-6-phenylpyrimidine following spinal cord injury resulted in the reduction of chemokine C-C motif chemokine ligand 2-recruited microglia/macrophages at the lesion site and remarkably improved the hindlimb locomotor function of rats. Our results have provided insights into the functions of astrocyte-activated chemokines in the recruitment of leukocytes and may be beneficial to develop interventions targeting chemokine C-C motif chemokine ligand 2 for neuroinflammation after spinal cord injury.

8.
Neural Regen Res ; 18(6): 1339-1346, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36453421

ABSTRACT

Astrocytes are important cellular centers of cholesterol synthesis and metabolism that help maintain normal physiological function at the organism level. Spinal cord injury results in aberrant cholesterol metabolism by astrocytes and excessive production of oxysterols, which have profound effects on neuropathology. 25-Hydroxycholesterol (25-HC), the main product of the membrane-associated enzyme cholesterol-25-hydroxylase (CH25H), plays important roles in mediating neuroinflammation. However, whether the abnormal astrocyte cholesterol metabolism induced by spinal cord injury contributes to the production of 25-HC, as well as the resulting pathological effects, remain unclear. In the present study, spinal cord injury-induced activation of thrombin was found to increase astrocyte CH25H expression. A protease-activated receptor 1 inhibitor was able to attenuate this effect in vitro and in vivo. In cultured primary astrocytes, thrombin interacted with protease-activated receptor 1, mainly through activation of the mitogen-activated protein kinase/nuclear factor-kappa B signaling pathway. Conditioned culture medium from astrocytes in which ch25h expression had been knocked down by siRNA reduced macrophage migration. Finally, injection of the protease activated receptor 1 inhibitor SCH79797 into rat neural sheaths following spinal cord injury reduced migration of microglia/macrophages to the injured site and largely restored motor function. Our results demonstrate a novel regulatory mechanism for thrombin-regulated cholesterol metabolism in astrocytes that could be used to develop anti-inflammatory drugs to treat patients with spinal cord injury.

9.
Cell Biosci ; 12(1): 128, 2022 Aug 14.
Article in English | MEDLINE | ID: mdl-35965310

ABSTRACT

BACKGROUND: Reactive astrocytes are increasingly recognized as crucial regulators of innate immunity in degenerative or damaged central nervous system (CNS). Many proinflammatory mediators have been shown to drive inflammatory cascades of astrocytes through activation of NF-κB, thereby affecting the functional outcome of the insulted CNS. D-dopachrome tautomerase (D-DT), a newly described cytokine and a close homolog of proinflammatory macrophage migration inhibitory factor (MIF), has been revealed to share receptor and overlapping functional spectrum with MIF, but little is known about its roles in the neuropathological progression of the CNS and relevant regulatory mechanisms. RESULTS: D-DT protein levels were significantly elevated within neurons and astrocytes following SCI. Analysis of transcriptome profile revealed that D-DT was able to activate multiple signal pathways of astrocytes, which converged to NF-κB, a hub regulator governing proinflammatory response. Rat D-DT recombinant protein was efficient in inducing the production of inflammatory cytokines from astrocytes through interaction with CD74 receptor. Activation of mitogen-activated protein kinases (MAPKs) and NF-κB was observed to be essential for the transduction of D-DT signaling. Administration of D-DT specific inhibitor at lesion sites of the cord resulted in significant attenuation of NF-κB activation and reduction of the inflammatory cytokines following SCI, and accordingly improved the recovery of locomotor functions. CONCLUSION: Collectively, D-DT is a novel proinflammatory mediator of astrocytes following SCI. Insights of its cell-specific expression and relevant proinflammatory mechanisms will provide clues for the control of CNS inflammation.

10.
Cell Death Discov ; 8(1): 189, 2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35399122

ABSTRACT

Spinal cord injury (SCI) will result in the significant elevation of thrombin production at lesion site via either breakage of blood-spinal cord barrier or upregulated expression within nerve cells. Thrombin-induced activation of the protease activated receptors (PARs) evokes various pathological effects that deteriorate the functional outcomes of the injured cord. The cellular consequences of thrombin action on the astrocytes, as well as the underlying mechanism are not fully elucidated by far. In the present study, SCI model of rats was established by contusion, and primary astrocytes were isolated for culture from newborn rats. The expression levels of thrombin and PAR1 receptor at lesion sites of the spinal cord were determined. The primary astrocytes cultured in vitro were stimulated with different concentration of thrombin, and the resultant morphological changes, inflammatory astrocytic responses, as well as PAR1-activated signal pathway of astrocytes were accordingly examined using various agonists or antagonists of the receptor. Thrombin was found to reverse astrocytic stellation, promote proliferation but inhibit migration of astrocytes. Furthermore, the serine protease was shown to facilitate inflammatory response of astrocytes through regulation of MAPKs/NFκB pathway. Our results have provided the morphological evidence of astrocytic reactivity in response to thrombin stimulation and its neuroinflammatory effects following SCI, which will be indicative for the fundamental insights of thrombin-induced neuropathology.

11.
World J Surg Oncol ; 20(1): 57, 2022 Feb 27.
Article in English | MEDLINE | ID: mdl-35220978

ABSTRACT

OBJECTIVE: Second primary renal cell carcinoma (2nd RCC) refers to renal cell carcinoma (RCC) diagnosed after another unrelated malignancy. This study aims to compare the clinical manifestation, pathology, treatment, and prognostic features of patients with 2nd RCC and first primary renal cell carcinoma (1st RCC). MATERIALS AND METHODS: Data of the patients with localized RCC were retrospectively collected. They were classified as 2nd RCC or 1st RCC according to a previously diagnosed cancer, including 113 cases of 2nd RCC and 749 cases of 1st RCC. RESULTS: The most common types of extrarenal malignancies in patients with 2nd RCC include lung, colorectal, breast, gynecological, and gastric cancers. The age and smoking rate of 2nd RCC patients were significantly higher than in those of 1st RCC patients. For 2nd RCC patients, fewer had clinical symptoms and renal masses tend to be smaller. One hundred and eight (95.6%) patients with 2nd RCC received surgical interventions. All patients with 1st RCC underwent renal surgery. More patients with 2nd RCC underwent a partial nephrectomy. Pathologically, there was no significant difference in postoperative pathological types between the 2nd and 1st RCCs. However, the 2nd RCCs were commonly identified in the early stages. The median overall survival (OS) of 2nd RCC patients was 117 months, which was shorter than that of 1st RCC patients. CONCLUSIONS: Second RCC is not uncommon. More attention should be paid to screening for 2nd RCC in cancer survivors. There are some differences between patients with 2nd and 1st RCCs that should be viewed separately.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Neoplasms, Second Primary , Carcinoma, Renal Cell/pathology , Humans , Kidney Neoplasms/diagnosis , Kidney Neoplasms/surgery , Neoplasms, Second Primary/surgery , Nephrectomy , Retrospective Studies
12.
J Neuroinflammation ; 18(1): 205, 2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34530848

ABSTRACT

BACKGROUND: Two activation states of reactive astrocytes termed A1 and A2 subtypes emerge at the lesion sites following spinal cord injury (SCI). A1 astrocytes are known to be neurotoxic that participate in neuropathogenesis, whereas A2 astrocytes have been assigned the neuroprotective activity. Heat shock transcription factor 1 (HSF1) plays roles in protecting cells from stress-induced apoptosis and in controlling inflammatory activation. It is unknown whether HSF1 is involved in suppressing the conversion of A1 astrocytes following SCI. METHODS: A contusion model of the rat spinal cord was established, and the correlations between HSF1 expression and onset of A1 and A2 astrocytes were assayed by Western blot and immunohistochemistry. 17-AAG, the agonist of HSF1, was employed to treat the primary cultured astrocytes following a challenge by an A1-astrocyte-conditioned medium (ACM) containing 3 ng/ml of IL-1α, 30 ng/ml of TNF-α, and 400 ng/ml of C1q for induction of the A1 subtype. The effects of 17-AAG on the phenotype conversion of astrocytes, as well as underlying signal pathways, were examined by Western blot or immunohistochemistry. RESULTS: The protein levels of HSF1 were significantly increased at 4 days and 7 days following rat SCI, showing colocalization with astrocytes. Meanwhile, C3-positive A1 astrocytes were observed to accumulate at lesion sites with a peak at 1 day and 4 days. Distinctively, the S100A10-positive A2 subtype reached its peak at 4 days and 7 days. Incubation of the primary astrocytes with ACM markedly induced the conversion of the A1 phenotype, whereas an addition of 17-AAG significantly suppressed such inducible effects without conversion of the A2 subtype. Activation of HSF1 remarkably inhibited the activities of MAPKs and NFκB, which was responsible for the regulation of C3 expression. Administration of 17-AAG at the lesion sites of rats was able to reduce the accumulation of A1 astrocytes. CONCLUSION: Collectively, these data reveal a novel mechanism of astrocyte phenotype conversion following SCI, and HSF1 plays key roles in suppressing excessive increase of neurotoxic A1 astrocytes.


Subject(s)
Astrocytes/metabolism , Heat Shock Transcription Factors/biosynthesis , Phenotype , Spinal Cord Injuries/metabolism , Animals , Animals, Newborn , Astrocytes/pathology , Cells, Cultured , Heat Shock Transcription Factors/genetics , Hot Temperature/adverse effects , Male , Rats , Rats, Sprague-Dawley , Spinal Cord Injuries/genetics , Spinal Cord Injuries/pathology
13.
J Neuroinflammation ; 18(1): 130, 2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34116703

ABSTRACT

BACKGROUND: Astrocytes are the predominant glial cell type in the central nervous system (CNS) that can secrete various cytokines and chemokines mediating neuropathology in response to danger signals. D-dopachrome tautomerase (D-DT), a newly described cytokine and a close homolog of macrophage migration inhibitory factor (MIF) protein, has been revealed to share an overlapping function with MIF in some ways. However, its cellular distribution pattern and mediated astrocyte neuropathological function in the CNS remain unclear. METHODS: A contusion model of the rat spinal cord was established. The protein levels of D-DT and PGE2 synthesis-related proteinase were assayed by Western blot and immunohistochemistry. Primary astrocytes were stimulated by different concentrations of D-DT in the presence or absence of various inhibitors to examine relevant signal pathways. The post-injury locomotor functions were assessed using the Basso, Beattie, and Bresnahan (BBB) locomotor scale. RESULTS: D-DT was inducibly expressed within astrocytes and neurons, rather than in microglia following spinal cord contusion. D-DT was able to activate the COX2/PGE2 signal pathway of astrocytes through CD74 receptor, and the intracellular activation of mitogen-activated protein kinases (MAPKs) was involved in the regulation of D-DT action. The selective inhibitor of D-DT was efficient in attenuating D-DT-induced astrocyte production of PGE2 following spinal cord injury, which contributed to the improvement of locomotor functions. CONCLUSION: Collectively, these data reveal a novel inflammatory activator of astrocytes following spinal cord injury, which might be beneficial for the development of anti-inflammation drug in neuropathological CNS.


Subject(s)
Astrocytes/metabolism , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Intramolecular Oxidoreductases/metabolism , Neuroinflammatory Diseases/metabolism , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Animals , Animals, Newborn , Antigens, Differentiation, B-Lymphocyte/metabolism , Cell Culture Techniques , Disease Models, Animal , Histocompatibility Antigens Class II/metabolism , Intramolecular Oxidoreductases/antagonists & inhibitors , Intramolecular Oxidoreductases/drug effects , Locomotion/drug effects , Macrophage Migration-Inhibitory Factors/metabolism , Male , Mitogen-Activated Protein Kinases/metabolism , Pyrimidines/pharmacology , Rats , Rats, Sprague-Dawley , Signal Transduction
14.
Front Mol Neurosci ; 14: 629910, 2021.
Article in English | MEDLINE | ID: mdl-33967693

ABSTRACT

Neuroinflammation contributes to delayed (secondary) neurodegeneration following traumatic brain injury (TBI). Tumor necrosis factor receptor-associated factor 6 (TRAF6) signaling may promote post-TBI neuroinflammation, thereby exacerbating secondary injury. This study investigated the pathogenic functions of TRAF6 signaling following TBI in vivo and in vitro. A rat TBI model was established by air pressure contusion while lipopolysaccharide (LPS) exposure was used to induce inflammatory-like responses in cultured astrocytes. Model rats were examined for cell-specific expression of TRAF6, NF-κB, phosphorylated (p)-NF-κB, MAPKs (ERK, JNK, and p38), p-MAPKs, chemokines (CCL2 and CXCL1), and chemokine receptors (CCR2 and CXCR2) by immunofluorescence, RT-qPCR, western blotting, and ELISA, for apoptosis by TUNEL staining, and spatial cognition by Morris water maze testing. These measurements were compared between TBI model rats receiving intracerebral injections of TRAF6-targeted RNAi vector (AAV9-TRAF6-RNAi), empty vector, MAPK/NF-κB inhibitors, or vehicle. Primary astrocytes were stimulated with LPS following TRAF6 siRNA or control transfection, and NF-κB, MAPKs, chemokine, and chemokine receptor expression levels evaluated by western blotting and ELISA. TRAF6 was expressed mainly in astrocytes and neurons of injured cortex, peaking 3 days post-TBI. Knockdown by AAV9-TRAF6-RNAi improved spatial learning and memory, decreased TUNEL-positive cell number in injured cortex, and downregulated expression levels of p-NF-κB, p-ERK, p-JNK, p-p38, CCL2, CCR2, CXCL1, and CXCR2 post-TBI. Inhibitors of NF-κB, ERK, JNK, and p38 significantly suppressed CCL2, CCR2, CXCL1, and CXCR2 expression following TBI. Furthermore, TRAF6-siRNA inhibited LPS-induced NF-κB, ERK, JNK, p38, CCL2, and CXCL1 upregulation in cultured astrocytes. Targeting TRAF6-MAPKs/NF-κB-chemokine signaling pathways may provide a novel therapeutic approach for reducing post-TBI neuroinflammation and concomitant secondary injury.

15.
Oncogene ; 40(15): 2635-2650, 2021 04.
Article in English | MEDLINE | ID: mdl-33564070

ABSTRACT

The prognosis for patients with metastatic bladder cancer (BCa) is poor, and it is not improved by current treatments. RNA-binding motif protein X-linked (RBMX) are involved in the regulation of the malignant progression of various tumors. However, the role of RBMX in BCa tumorigenicity and progression remains unclear. In this study, we found that RBMX was significantly downregulated in BCa tissues, especially in muscle-invasive BCa tissues. RBMX expression was negatively correlated with tumor stage, histological grade and poor patient prognosis. Functional assays demonstrated that RBMX inhibited BCa cell proliferation, colony formation, migration, and invasion in vitro and suppressed tumor growth and metastasis in vivo. Mechanistic investigations revealed that hnRNP A1 was an RBMX-binding protein. RBMX competitively inhibited the combination of the RGG motif in hnRNP A1 and the sequences flanking PKM exon 9, leading to the formation of lower PKM2 and higher PKM1 levels, which attenuated the tumorigenicity and progression of BCa. Moreover, RBMX inhibited aerobic glycolysis through hnRNP A1-dependent PKM alternative splicing and counteracted the PKM2 overexpression-induced aggressive phenotype of the BCa cells. In conclusion, our findings indicate that RBMX suppresses BCa tumorigenicity and progression via an hnRNP A1-mediated PKM alternative splicing mechanism. RBMX may serve as a novel prognostic biomarker for clinical intervention in BCa.


Subject(s)
Heterogeneous Nuclear Ribonucleoprotein A1/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Pyruvate Kinase/metabolism , Urinary Bladder Neoplasms/metabolism , Alternative Splicing , Animals , Disease Progression , Female , Heterogeneous Nuclear Ribonucleoprotein A1/genetics , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterografts , Humans , Male , Mice , Mice, Inbred NOD , Middle Aged , Prognosis , Pyruvate Kinase/genetics , Survival Analysis , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology
16.
J Clin Neurosci ; 78: 365-370, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32360159

ABSTRACT

To explore the effects of p38 MAPK signaling pathway on cognitive function and recovery of neuronal function after hypoxic-ischemic brain injury (HIBI) in newborn rats. Seventy-two healthy SPF grade SD newborn rats were randomly and equally divided into Normal group (healthy rats) and Sham group (rats underwent sham operation), Model group (HIBI model rats), p38 MAPK Inhibitor group (HIBI model rats treated with p38 MAPK inhibitor) and p38 MAPK Activator group (HIBI model rats treated with p38 MAPK activator). On postnatal day 28, Morris water maze, tail suspension test and inclined plane test were conducted on rats in each group. Twenty-four hours after modeling, the expression of p-p38 MAPK protein and apoptosis related genes in rat hippocampal tissues was detected by TUNEL staining, qRT-PCR and Western blot. Compared with Normal group, escape latency and inclined plane test time were prolonged, the number of passing through the platform and tail suspension time were reduced (all P < 0.05); Bax and Caspase-3 mRNA and protein expression levels and p-p38 MAPK protein level were increased, Bcl-2 mRNA level was decreased, and neuronal apoptosis proportion was increased in Model group (all P < 0.05). Compared with Model group, the above indicators showed reversed and enhanced trends in p38 MAPK Inhibitor and p38 MAPK Activator groups, respectively (all P < 0.05). Inhibition of p38 MAPK signaling pathway can effectively improve the learning and memory ability and motor function of newborn rats with HIBI, and reduce neuronal apoptosis in the hippocampal tissues, thereby promoting neuronal recovery.


Subject(s)
Apoptosis , Cognition/drug effects , Hypoxia-Ischemia, Brain/physiopathology , Neurons/physiology , Recovery of Function , p38 Mitogen-Activated Protein Kinases/pharmacology , Animals , Animals, Newborn , Apoptosis/drug effects , Apoptosis Regulatory Proteins/drug effects , Hippocampus/metabolism , Learning/drug effects , Male , Memory/drug effects , Neurons/drug effects , Rats , p38 Mitogen-Activated Protein Kinases/metabolism
17.
Transl Cancer Res ; 9(3): 1567-1576, 2020 Mar.
Article in English | MEDLINE | ID: mdl-35117504

ABSTRACT

BACKGROUND: With the advancement of surgical techniques and instruments, surgeries had been increasingly applied to patients with metastatic urothelial carcinoma. However, their survival benefits had not been carefully evaluated. METHODS: Eligible articles were conducted by comprehensively searching three online databases (PubMed, EMBASE and Web of Science), published before May 1st, 2019. Overall survival (OS) and cancer-specific survival/progression-free survival (CSS/PFS) were analyzed to clarify their associations. RESULTS: Finally, eight out of 3,581 articles were enrolled in this meta-analysis. In terms of OS, our results indicated that OS was positively associated with the patients underwent radical cystectomy (RC) (pooled HR =0.72, 95% CI, 0.64-0.81, P=0.158, I 2=39.4%), but it was not significantly associated with the patients underwent metastasectomy (MC) (pooled HR =0.78, 95% CI, 0.56-1.08, P=0.093, I 2=49.7%). As for CSS/PFS, our results displayed that patients could benefit from surgery (RC or MC) (pooled HR =0.56, 95% CI, 0.42-0.75, P=0.213, I 2=35.3%). CONCLUSIONS: Despite the positive role of the RC in treating metastatic urothelial carcinoma, MC did not suggest a survival benefit in terms of OS. More strictly designed randomized controlled trials (RCTs) were needed to validate our findings.

18.
Prostate ; 79(16): 1823-1831, 2019 12.
Article in English | MEDLINE | ID: mdl-31509289

ABSTRACT

BACKGROUND: The amplification of gene COPS3 is closely related to the development of osteosarcoma and hepatocellular carcinoma. However, the effects of COPS3 on prostate cancer (PCa) are poorly understood. METHODS: In this study, the protein expression of COPS3 in PCa tissues, adjacent normal tissues, and bone metastasis tissues of PCa was analyzed by immunohistochemistry. Furthermore, cell proliferation, colony formation, migration, and invasion assay were performed in 22rv1 and PC-3 cells after knocking down COPS3 by small interfering RNAs. Furthermore, we performed western blot analysis to explore the potential mechanisms underlying it. RESULTS: This study found that the overall survival of the COPS3 high-expression group was significantly shorter than the low-expression group. This study discovered that the protein expression of COPS3 in PCa tissues was higher than that in the matched nontumor prostate tissues. In addition, tissues from bone metastasis of PCa had a high percentage of overexpressing COPS3. After knockdown of the COPS3 gene in 22rv1 and PC3 cells, two classic human PCa cell lines which had a high level of COPS3, the abilities of migration, invasion, and proliferation were inhibited. Finally, protein levels of phosphorylated P38 mitogen-activated protein kinase (MAPK) and N-cadherin were significantly decreased after knocking down the expression of COPS3, and the protein levels of E-cadherin were significantly increased. CONCLUSIONS: In conclusion, COPS3 may be closely related to the progress of PCa. Knockdown of COPS3 inhibited the progress of PCa through reducing the levels of phosphorylated P38 MAPK and impaired the epithelial-mesenchymal transition process.


Subject(s)
COP9 Signalosome Complex/deficiency , Prostatic Neoplasms/metabolism , Proto-Oncogene Proteins/deficiency , p38 Mitogen-Activated Protein Kinases/metabolism , Bone Neoplasms/metabolism , Bone Neoplasms/secondary , COP9 Signalosome Complex/biosynthesis , COP9 Signalosome Complex/genetics , Cell Line, Tumor , Cell Proliferation/physiology , Disease Progression , Epithelial-Mesenchymal Transition , Gene Knockdown Techniques , Humans , Immunohistochemistry , Male , Phosphorylation , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins/biosynthesis , Proto-Oncogene Proteins/genetics , RNA, Small Interfering/administration & dosage , Survival Rate , p38 Mitogen-Activated Protein Kinases/biosynthesis
19.
Neuroscience ; 408: 349-360, 2019 06 01.
Article in English | MEDLINE | ID: mdl-31026565

ABSTRACT

Oxysterol derived from cholesterol metabolism is involved in the inflammatory activation, and consequently in development of major chronic diseases. Multiple cytokines have been found to induce the expression of cholesterol metabolism-related enzymes. Several studies have shown that the protein level of cholesterol-25-hydroxylase (CH25H) is remarkably increased in response to injury of central nervous system (CNS), but little is known about the mechanisms of cytokine-induced expression of CH25H in specific cell types, and the resultant effects. In the present study, we demonstrated that ch25h expression was significantly upregulated in the astrocytes of rat injured spinal cord, in parallel with those of MIF. Administration of MIF inhibitor 4-IPP in the lesion sites attenuated injury-induced ch25h expression. MIF facilitated ch25h expression of astrocytes through interaction with CD74 membrane receptor, which in turn promoted production of chemokines, as identified by transcriptome profiles. MIF-induced release of oxysterol 25-hydroxycholesterol (25-HC) from astrocytes affects cell migration, but inhibited cell viability in dose-dependent manner, suggesting that MIF aggravates progressive neuropathology through regulation of cholesterol metabolism following CNS injury. These results have provided a novel mechanism and a potential therapeutic strategy for injured CNS.


Subject(s)
Astrocytes/drug effects , Chemotaxis/drug effects , Macrophage Migration-Inhibitory Factors/pharmacology , Spinal Cord Injuries/metabolism , Spinal Cord/drug effects , Steroid Hydroxylases/metabolism , Animals , Astrocytes/metabolism , Macrophage Migration-Inhibitory Factors/antagonists & inhibitors , Macrophage Migration-Inhibitory Factors/metabolism , Male , Pyrimidines/pharmacology , Rats , Spinal Cord/metabolism
20.
J Neuroinflammation ; 16(1): 85, 2019 Apr 13.
Article in English | MEDLINE | ID: mdl-30981278

ABSTRACT

BACKGROUND: Astrocytes have been shown to produce several pro- and anti-inflammatory cytokines to maintain homeostasis of microenvironment in response to vast array of CNS insults. Some inflammation-related cytokines are responsible for regulating such cell events. Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that can be inducibly expressed in the lesioned spinal cord. Unknown is whether MIF can facilitate the production of immunosuppressive factors from astrocytes to tune milieu following spinal cord injury. METHODS: Following establishment of contusion SCI rat model, correlation of PGE2 synthesis-related protein levels with that of MIF was assayed by Western blot. ELISA assay was used to detect production of PGE2, TNF-α, IL-1ß, and IL-6. Immunohistochemistry was performed to observe colocalization of COX2 with GFAP- and S100ß-positive astrocytes. The primary astrocytes were treated by various inhibitors to validate relevant signal pathway. RESULTS: The protein levels of MIF and COX2, but not of COX1, synchronously increased following spinal cord injury. Treatment of MIF inhibitor 4-IPP to the lesion sites significantly reduced the expression of COX2, mPGES-1, and as a consequence, the production of PGE2. Astrocytes responded robustly to the MIF interference, by which regulated MAPK/COX2/PGE2 signal pathway through coupling with the CD74 membrane receptor. MIF-induced production of PGE2 from astrocytes was able to suppress production of TNF-α, but boosted production of IL-1ß and IL-6 in LPS-activated macrophages. CONCLUSION: Collectively, these results reveal a novel function of MIF-mediated astrocytes, which fine-tune inflammatory microenvironment to maintain homeostasis. These suggest an alternative therapeutic strategy for CNS inflammation.


Subject(s)
Astrocytes/drug effects , Dinoprostone/metabolism , Inflammation/etiology , Inflammation/pathology , Macrophage Migration-Inhibitory Factors/pharmacology , Spinal Cord Injuries/complications , Animals , Animals, Newborn , Antigens, Differentiation, B-Lymphocyte/metabolism , Astrocytes/chemistry , Cells, Cultured , Culture Media, Conditioned/pharmacology , Disease Models, Animal , Glial Fibrillary Acidic Protein/metabolism , Histocompatibility Antigens Class II/metabolism , Indoles/pharmacology , Macrophages/drug effects , Male , Prostaglandin-Endoperoxide Synthases/metabolism , Rats , Rats, Sprague-Dawley , S100 Calcium Binding Protein beta Subunit/metabolism , Spinal Cord/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...