Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(12)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37420872

ABSTRACT

Acoustic dyadic sensors (ADSs) are a new type of acoustic sensor with higher directivity than microphones and acoustic vector sensors, which has great application potential in the fields of sound source localization and noise cancellation. However, the high directivity of an ADS is seriously affected by the mismatches between its sensitive units. In this article, (1) a theoretical model of mixed mismatches was established based on the finite-difference approximation model of uniaxial acoustic particle velocity gradient and its ability to reflect the actual mismatches was proven by the comparison of theoretical and experimental directivity beam patterns of an actual ADS based on MEMS thermal particle velocity sensors. (2) Additionally, a quantitative analysis method based on directivity beam pattern was proposed to easily estimate the specific magnitude of the mismatches, which was proven to be useful for the design of ADSs to estimate the magnitudes of different mismatches of an actual ADS. (3) Moreover, a correction algorithm based on the theoretical model of mixed mismatches and quantitative analysis method was successfully demonstrated to correct several groups of simulated and measured beam patterns with mixed mismatches.


Subject(s)
Acoustics , Sound Localization , Models, Theoretical , Noise , Algorithms
2.
Sensors (Basel) ; 21(13)2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34202889

ABSTRACT

In this paper, small-sized acoustic horns, the sensitivity enhancement package for the MEMS-based thermal acoustic particle velocity sensor, have been designed and optimized. Four kinds of acoustic horns, including tube horn, double cone horn, double paradox horn, and exponential horn, were analyzed through numerical calculation. Considering both the amplification factor and effective length of amplification zone, a small-sized double cone horn with middle tube is designed and further optimized. A three-wire thermal acoustic particle velocity sensor was fabricated and packaged in the 3D printed double cone tube (DCT) horn. Experiment results show that an amplification factor of 6.63 at 600 Hz and 6.93 at 1 kHz was achieved. A good 8-shape directivity pattern was also obtained for the optimized DCT horn with the lateral inhibition ratio of 50.3 dB. No additional noise was introduced, demonstrating the DCT horn's potential in improving the sensitivity of acoustic particle velocity sensors.


Subject(s)
Micro-Electrical-Mechanical Systems , Acoustics , Animals , Equipment Design , Noise
SELECTION OF CITATIONS
SEARCH DETAIL
...