Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Quant Imaging Med Surg ; 14(1): 527-539, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38223105

ABSTRACT

Background: Hip fractures, including femoral neck fractures, are a significant cause of morbidity and mortality in the elderly population and are typically diagnosed using plain radiography. However, diagnosing non-displaced femoral neck fractures can be challenging due to their subtle appearance on hip radiographs. Previous deep-learning models have shown low accuracy in identifying these fractures on anteroposterior (AP) radiographs; however, no studies have used lateral radiographs. This study aimed to evaluate the potential of using deep-learning with both AP and lateral hip radiographs to automatically identify non-displaced femoral neck fractures. Methods: We conducted a retrospective analysis of patients with femoral neck fractures at The First Affiliated Hospital of Xiamen University. All the hip radiographs were reviewed, and cases of non-displaced femoral neck fractures were included in the study. Additionally, 439 participants with normal hip radiographs were also included in the study. A vision transformer (Vit) model was developed using 1,536 AP and lateral hip radiograph. The model's performance was compared to the performance of two groups of human observers: an expert group comprising orthopedic surgeons and radiologists, and a non-expert group, including emergency physicians and general practice doctors. We also carried out the external validation using two additional data sets to assess the generalizability of the model. Results: The Vit model showed exceptional performance in detecting non-displaced femoral neck fractures on paired AP and lateral hip radiographs, achieving a binary accuracy of 95.8% [95% confidence interval (CI): 94.9%, 96.8%] and an area under the curve (AUC) of 0.988. Compared to the human observers, the model had a higher accuracy of 96.7% (95% CI: 93.9%, 99.5%) on the paired AP and lateral hip radiographs, while the accuracy of the expert group was 90.5% (95% CI: 85.7%, 95.2%). Further, the model maintained good performance during the external validation, with an AUC of 0.959 on the paired AP and lateral views. Conclusions: Our Vit model showed expert-level performance in identifying non-displaced femoral neck fractures on paired AP and lateral hip radiographs. This model has the potential to enhance diagnosis accuracy and improve patient outcomes by reducing the need for additional examinations and preoperative time.

2.
IEEE Trans Med Imaging ; 42(5): 1337-1348, 2023 05.
Article in English | MEDLINE | ID: mdl-37015475

ABSTRACT

Multi-instance learning (MIL) is widely adop- ted for automatic whole slide image (WSI) analysis and it usually consists of two stages, i.e., instance feature extraction and feature aggregation. However, due to the "weak supervision" of slide-level labels, the feature aggregation stage would suffer from severe over-fitting in training an effective MIL model. In this case, mining more information from limited slide-level data is pivotal to WSI analysis. Different from previous works on improving instance feature extraction, this paper investigates how to exploit the latent relationship of different instances (patches) to combat overfitting in MIL for more generalizable WSI classification. In particular, we propose a novel Multi-instance Rein- forcement Contrastive Learning framework (MuRCL) to deeply mine the inherent semantic relationships of different patches to advance WSI classification. Specifically, the proposed framework is first trained in a self-supervised manner and then finetuned with WSI slide-level labels. We formulate the first stage as a contrastive learning (CL) process, where positive/negative discriminative feature sets are constructed from the same patch-level feature bags of WSIs. To facilitate the CL training, we design a novel reinforcement learning-based agent to progressively update the selection of discriminative feature sets according to an online reward for slide-level feature aggregation. Then, we further update the model with labeled WSI data to regularize the learned features for the final WSI classification. Experimental results on three public WSI classification datasets (Camelyon16, TCGA-Lung and TCGA-Kidney) demonstrate that the proposed MuRCL outperforms state-of-the-art MIL models. In addition, MuRCL can achieve comparable performance to other state-of-the-art MIL models on TCGA-Esca dataset.


Subject(s)
Image Processing, Computer-Assisted , Supervised Machine Learning , Humans , Datasets as Topic , Lung/diagnostic imaging , Kidney/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...