Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Front Oncol ; 11: 629718, 2021.
Article in English | MEDLINE | ID: mdl-33816266

ABSTRACT

N6-methyladenosine (m6A) plays crucial roles in a diverse range of physiological and pathological processes, and it is believed that it tremendously promotes neoplasia and progression. However, knowledge of the molecular characteristics of m6A modification, its prognostic value, and the infiltration of immune cell populations in head and neck squamous cell carcinoma (HNSCC) is still insufficient. Therefore, a pan-cancer genomic analysis was systematically performed here by examining m6A regulators at the molecular level within 33 multiple cancer types, and the correlations between the expression of m6A molecules were researched using datasets from The Cancer Genome Atlas (TCGA). Based on the above analysis, insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) is upregulated in HNSCC and may serve as an independent prognostic factor of overall survival, thus showing potential as a prognostic biomarker in HNSCC. Genetic alteration analyses elucidated the reasons for the abnormal upregulation of IGF2BP2 in HNSCC. As a result, IGF2BP2 was selected for further univariate and multivariate analyses. The functions of the related genes were annotated through gene set enrichment analysis, and the activation states of multiple biological pathways were shown by gene set variation analysis. We found that LRRC59 and STIP1 may act as IGF2BP2-associated genes to have a regulatory function in the m6A modification. In addition, we found that the status of immune cell infiltration was correlated with the level of IGF2BP2 gene expression. Our results provide supplementation at the molecular level for epigenetic regulation in HNSCC and insight into effective immunotherapy targets and strategies.

2.
Sensors (Basel) ; 20(3)2020 Jan 24.
Article in English | MEDLINE | ID: mdl-31991656

ABSTRACT

In this work, we design a small-sized bi-cone acoustic vector-sensor array (BCAVSA) and propose a frequency invariant beamforming method for the BCAVSA, inspired by the Ormia ochracea's coupling ears and harmonic nesting. First, we design a BCAVSA using several sets of cylindrical acoustic vector-sensor arrays (AVSAs), which are used as a guide to construct the constant beamwidth beamformer. Due to the mechanical coupling system of the Ormia ochracea's two ears, the phase and amplitude differences of acoustic signals at the bilateral tympanal membranes are magnified. To obtain a virtual BCAVSA with larger interelement distances, we then extend the coupling magnified system into the BCAVSA by deriving the expression of the coupling magnified matrix for the BCAVSA and providing the selecting method of coupled parameters for fitting the underwater signal frequency. Finally, the frequency invariant beamforming method is developed to acquire the constant beamwidth pattern in the three-dimensional plane by deriving several sets of the frequency weighted coefficients for the different cylindrical AVSAs. Simulation results show that this method achieves a narrower mainlobe width compared to the original BCAVSA. This method has lower sidelobes and a narrower mainlobe width compared to the coupling magnified bi-cone pressure sensor array.

SELECTION OF CITATIONS
SEARCH DETAIL