Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Biomed Eng ; 1: 23, 2019.
Article in English | MEDLINE | ID: mdl-32903351

ABSTRACT

BACKGROUND: Accurate spasticity assessment provides an objective evaluation index for the rehabilitation treatment of patients with spasticity, and the key is detecting stretch reflex onset. The surface electromyogram of patients with spasticity is prone to false peaks, and its data length is unstable. These conditions decrease signal differences before and after stretch reflex onset. Therefore, a method for detecting stretch reflex onset based on empirical mode decomposition denoising and modified sample entropy recognition is proposed in this study. RESULTS: The empirical mode decomposition algorithm is better than the wavelet threshold algorithm in denoising surface electromyogram signal. Without adding Gaussian white noise to the electromyogram signal, the stretch reflex onset recognition rate of the electromyogram signal before and after empirical mode decomposition denoising was increased by 56%. In particular, the recognition rate of stretch reflex onset under the optimal parameter of the modified sample entropy can reach up to 100% and the average recognition rate is 93%. CONCLUSIONS: The empirical mode decomposition algorithm can eliminate the baseline activity of the surface electromyogram signal before stretch reflex onset and effectively remove noise from the signal. The identification of stretch reflex onset using combined empirical mode decomposition and modified sample entropy is better than that via modified sample entropy alone, and stretch reflex onset can be accurately determined.

2.
IEEE Trans Neural Syst Rehabil Eng ; 26(7): 1424-1434, 2018 07.
Article in English | MEDLINE | ID: mdl-29985152

ABSTRACT

To facilitate stretch reflex onset (SRO) detection and improve accuracy and reliability of spasticity assessment in clinical settings, a new method to measure dynamic stretch reflex threshold (DSRT) based on Hilbert-Huang transform marginal spectrum entropy (HMSEN) of surface electromyography (sEMG) signals and a portable system to quantify modified Ashworth scale (MAS) for spasticity assessment were developed. The sEMG signals were divided into frames using a fixed-length sliding window, and the HMSEN of each frame was calculated. An adaptive threshold was set to measure the DSRT. The HMSEN based method can quantify muscle activity through time-frequency and nonlinear dynamics analysis, therefore providing deeper insight about the spastic muscle mechanisms during stretching and a reliable SRO detection method. Experimental results revealed that the HMSEN based method could reliably detect the SRO and measure the DSRT (recognition rate: 95.45%), and could achieve improved performance over the time-domain based method. There was a strong correlation ( to -0.900) between the MAS scores and the DSRT index, and the test-retest reliability was high. Additionally, limitations of the MAS were analyzed. This paper indicates that the presented framework can provide a promising tool to measure DSRT and a clinical quantitative approach for spasticity assessment.


Subject(s)
Electromyography/methods , Entropy , Muscle Spasticity/diagnosis , Adult , Aged , Aged, 80 and over , Algorithms , Arm/physiopathology , Female , Humans , Male , Middle Aged , Models, Theoretical , Muscle Spasticity/physiopathology , Nonlinear Dynamics , Reflex, Stretch , Reproducibility of Results , Stroke/physiopathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...