Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
JACS Au ; 1(4): 396-408, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-34467303

ABSTRACT

Industrial low-temperature methane combustion catalyst Pd/Al2O3 suffers from H2O-induced deactivation. It is imperative to design Pd catalysts free from this deactivation and with high atomic efficiency. Using a small-pore zeolite SSZ-13 as support, herein we report well-defined Pd catalysts with dominant active species as finely dispersed Pd cations, uniform PdO particles embedded inside the zeolite framework, or PdO particles decorating the zeolite external surface. Through detailed reaction kinetics and spectroscopic and microscopic studies, we show that finely dispersed sites are much less active than PdO nanoparticles. We further demonstrate that H2O-induced deactivation can be readily circumvented by using zeolite supports with high Si/Al ratios. Finally, we provide a few rational catalyst design suggestions for methane oxidation based on the new knowledge learned in this study.

2.
Small ; 17(16): e2006477, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33783134

ABSTRACT

Single-atom catalysts (SACs) have aroused great attention due to their high atom efficiency and unprecedented catalytic properties. A remaining challenge is to anchor the single atoms individually on support materials via strong interactions. Herein, single atom Co sites have been developed on functionalized graphene by taking advantage of the strong interaction between Co2+ ions and the nitrile group of cyanographene. The potential of the material, which is named G(CN)Co, as a SAC is demonstrated using the electrocatalytic hydrazine oxidation reaction (HzOR). The material exhibits excellent catalytic activity for HzOR, driving the reaction with low overpotential and high current density while remaining stable during long reaction times. Thus, this material can be a promising alternative to conventional noble metal-based catalysts that are currently widely used in HzOR-based fuel cells. Density functional theory calculations of the reaction mechanism over the material reveal that the Co(II) sites on G(CN)Co can efficiently interact with hydrazine molecules and promote the NH bond-dissociation steps involved in the HzOR.

3.
Small ; 17(16): e2006478, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33739590

ABSTRACT

With increasing concerns for global warming, the solar-driven photocatalytic reduction of CO2 into chemical fuels like methanol is a propitious route to enrich energy supplies, with concomitant reduction of the abundant CO2  stockpiles. Herein, a novel single atom-confinement and a strategy are reported toward single ruthenium atoms dispersion over porous carbon nitride surface. Ruthenium single atom character is well confirmed by EXAFS absorption spectrometric analysis unveiling the cationic coordination environment for the single-atomic-site ruthenium center, that is formed by Ru-N/C intercalation in the first coordination shell, attaining synergism in N-Ru-N connection and interfacial carrier transfer. From time resolved fluorescence decay spectra, the average carrier lifetime of the RuSA-mC3 N4 system is found to be higher compared to m-C3 N4 ; the fact uncovering the crucial role of single Ru atoms in promoting photocatalytic reaction system. A high yield of methanol (1500 µmol g-1 cat. after 6 h of the reaction) using water as an electron donor and the reusability of the developed catalyst without any significant change in the efficiency represent the superior aspects for its potential application in real industrial technologies.

SELECTION OF CITATIONS
SEARCH DETAIL
...