Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.256
Filter
1.
World J Psychiatry ; 14(6): 784-793, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38984326

ABSTRACT

BACKGROUND: The expression pattern of gamma aminobutyric acid (GABA) receptor subunits are commonly altered in patients with schizophrenia, which may lead to nerve excitation/inhibition problems, affecting cognition, emotion, and behavior. AIM: To explore GABA receptor expression and its relationship with schizophrenia and to provide insights into more effective treatments. METHODS: This case-control study enrolled 126 patients with schizophrenia treated at our hospital and 126 healthy volunteers who underwent physical examinations at our hospital during the same period. The expression levels of the GABA receptor subunits were detected using 1H-magnetic resonance spectroscopy. The recognized cognitive battery tool, the MATRICS Consensus Cognitive Battery, was used to evaluate the scores for various dimensions of cognitive function. The correlation between GABA receptor subunit downregulation and schizophrenia was also analyzed. RESULTS: Significant differences in GABA receptor subunit levels were found between the case and control groups (P < 0.05). A significant difference was also found between the case and control groups in terms of cognitive function measures, including attention/alertness and learning ability (P < 0.05). Specifically, as the expression levels of GABRA1 (α1 subunit gene), GABRB2 (ß2 subunit gene), GABRD (δ subunit), and GABRE (ε subunit) decreased, the severity of the patients' condition increased gradually, indicating a positive correlation between the downregulation of these 4 receptor subunits and schizophrenia (P < 0.05). However, the expression levels of GABRA5 (α5 subunit gene) and GABRA6 (α6 subunit gene) showed no significant correlation with schizophrenia (P > 0.05). CONCLUSION: Downregulation of the GABA receptor subunits is positively correlated with schizophrenia. In other words, when GABA receptor subunits are downregulated in patients, cognitive impairment becomes more severe.

2.
Plant Physiol Biochem ; 214: 108888, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38954944

ABSTRACT

Trichomes are specialized epidermal structures that protect plants from biotic and abiotic stresses by synthesizing, storing, and secreting defensive compounds. This study investigates the role of the Gossypium arboreum DNA topoisomerase VI subunit B gene (GaTOP6B) in trichome development and branching. Sequence alignment revealed a high similarity between GaTOP6B and AtTOP6B, suggesting a conserved function in trichome regulation. Although AtTOP6B acts as a positive regulator of trichome development, functional analyses showed contrasting effects: Virus-induced gene silencing (VIGS) of GaTOP6B in cotton increased trichome density, while its overexpression in Arabidopsis decreased trichome density but enhanced branching. This demonstrates that GaTOP6B negatively regulates trichome number, indicating species-specific roles in trichome initiation and branching between cotton and Arabidopsis. Overexpression of the GaTOP6B promotes jasmonic acid synthesis, which in turn inhibits the G1/S or G2/M transitions, stalling the cell cycle. On the other hand, it suppresses brassinolide synthesis and signaling while promoting cytokinin degradation, further inhibiting mitosis. These hormonal interactions facilitate the transition of cells from the mitotic cycle to the endoreduplication cycle. As the level of endoreduplication increases, trichomes develop an increased number of branches. These findings highlight GaTOP6B's critical role as a regulator of trichome development, providing new genetic targets for improving cotton varieties in terms of enhanced adaptability and resilience.

3.
Article in English | MEDLINE | ID: mdl-38948962

ABSTRACT

BACKGROUND: FMX101 4%, as a topical foam formulation of minocycline, has been approved by US Food and Drug Administration for the treatment of moderate-to-severe acne vulgaris (AV). OBJECTIVE: To evaluate the efficacy and safety of FMX101 4% in treating Chinese subjects with moderate-to-severe facial AV. METHODS: This was a multi-centre, randomized, double-blind, vehicle-controlled phase 3 study in Chinese subjects with moderate-to-severe AV. Eligible subjects were randomized 2:1 to receive either FMX101 4% or vehicle foam treatment for 12 weeks. The primary efficacy endpoint was the change in inflammation lesion count (ILC) from baseline at week 12. The key secondary endpoint was the treatment success rate according to Investigator's Global Assessment (IGA) at week 12. RESULTS: In total, 372 subjects were randomized into two groups (FMX101 4% group, n = 248; vehicle group, n = 124). After 12 weeks treatment, the reduction in ILC from baseline was statistically significant in favour of FMX101 4%, compared with vehicle foam (-21.0 [0.08] vs. -12.3 [1.14]; LSM [SE] difference, -8.7 [1.34]; 95% CI [-11.3, -6.0]; p < 0.001). FMX101 4% treatment yielded significantly higher IGA treatment success rate at week 12 as compared to the control treatment (8.06% vs. 0%). Applying FMX101 4% also resulted in significant reduction in noninflammatory lesion count (nILC) versus vehicle foam at week 12 (-19.4 [1.03] vs. -14.9 [1.47]; LSM [SE] difference, -4.5 [1.74]; 95% CI [-8.0, -1.1]; p = 0.009). Most treatment-emergent adverse events (TEAEs) were mild-to-moderate in severity, and no treatment-related treatment-emergent serious adverse event (TESAE) occurred. Thus, FMX101 4% was considered to be a safe and well-tolerated product during the 12-week treatment period. CONCLUSION: FMX101 4% treatment for 12 weeks could lead to significantly reduced ILC and nILC, and improved IGA treatment success rate in Chinese subjects with moderate-to-severe facial AV. It also showed a well acceptable safe and tolerability profile.

4.
J Transl Med ; 22(1): 648, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38987805

ABSTRACT

Glioma is the most common malignant tumor in central nervous system, with significant health burdens to patients. Due to the intrinsic characteristics of glioma and the lack of breakthroughs in treatment modalities, the prognosis for most patients remains poor. This results in a heavy psychological and financial load worldwide. In recent years, cannabidiol (CBD) has garnered widespread attention and research due to its anti-tumoral, anti-inflammatory, and neuroprotective properties. This review comprehensively summarizes the preclinical and clinical research on the use of CBD in glioma therapy, as well as the current status of nanomedicine formulations of CBD, and discusses the potential and challenges of CBD in glioma therapy in the future.


Subject(s)
Cannabidiol , Glioma , Cannabidiol/therapeutic use , Cannabidiol/pharmacology , Humans , Glioma/drug therapy , Glioma/pathology , Animals , Translational Research, Biomedical , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Nanomedicine/methods
5.
J Ethnopharmacol ; : 118541, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992403

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Based on the core pathogenesis of hepatosplenic disorder and qi transformation disorder in ulcerative colitis, Tong-Xie-Yao-Fang (TXYF) is a classical traditional Chinese medicine commonly used to treat ulcerative colitis. Our study revealed that it has the potential to prevent colitis-associated colorectal cancer, which embodies the academic concept in traditional Chinese medicine of treating the disease before it develops. AIM OF THE STUDY: This study was aimed at evaluating the therapeutic role of TXYF in treating colitis-associated colorectal cancer and exploring its possible underlying mechanisms. MATERIALS AND METHODS: A colitis-associated colorectal cancer model was established in mice using azoxymethane and dextran sulfate sodium salt to examine the therapeutic effect of TXYF. The mouse body weights were observed. Hematoxylin-eosin staining was used to evaluate mouse colon histopathology. Colon cancer cells and colon epithelial cells were used to explore the potential molecular mechanisms. The proliferation and apoptosis of cells were detected by CCK-8 and cell colony assays, flow cytometry and western blotting. The epithelial-mesenchymal transition (EMT) and mitophagy markers were examined by immunohistochemistry, western blotting, quantitative real-time PCR and immunofluorescence staining. RESULTS: TXYF inhibited the tumorigenesis of mice with colitis-associated colorectal cancer and the growth of inflammatory colon cells. TXYF induced mitophagy in colon cancer cells through the PTEN-induced putative kinase 1 (PINK1)/Parkin pathway to reverse EMT, which was consistent with the results in mice with colitis-associated colorectal cancer. CONCLUSIONS: The results of the present study demonstrated that TXYF effectively inhibited the progression of colitis-associated colorectal cancer through the PINK1/Parkin pathway, which provides new evidence for prevention strategies for this disease.

6.
BMC Plant Biol ; 24(1): 664, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992595

ABSTRACT

BACKGROUND: Meloidogyne incognita is one of the most important plant-parasitic nematodes and causes tremendous losses to the agricultural economy. Light is an important living factor for plants and pathogenic organisms, and sufficient light promotes root-knot nematode infection, but the underlying mechanism is still unclear. RESULTS: Expression level and genetic analyses revealed that the photoreceptor genes PHY, CRY, and PHOT have a negative impact on nematode infection. Interestingly, ELONGATED HYPOCOTYL5 (HY5), a downstream gene involved in the regulation of light signaling, is associated with photoreceptor-mediated negative regulation of root-knot nematode resistance. ChIP and yeast one-hybrid assays supported that HY5 participates in plant-to-root-knot nematode responses by directly binding to the SWEET negative regulatory factors involved in root-knot nematode resistance. CONCLUSIONS: This study elucidates the important role of light signaling pathways in plant resistance to nematodes, providing a new perspective for RKN resistance research.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Plant Diseases , Tylenchoidea , Animals , Tylenchoidea/physiology , Plant Diseases/parasitology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis/parasitology , Arabidopsis/genetics , Arabidopsis/metabolism , Plant Roots/parasitology , Plant Roots/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Signal Transduction , Disease Resistance/genetics , Light , Gene Expression Regulation, Plant , Light Signal Transduction
7.
iScience ; 27(6): 110014, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38947512

ABSTRACT

The NAD+-dependent deacetylase SIRT7 is a pivotal regulator of DNA damage response (DDR) and a promising drug target for developing cancer therapeutics. However, limited progress has been made in SIRT7 modulator discovery. Here, we applied peptide-based deacetylase platforms for SIRT7 enzymatic evaluation and successfully identified a potent SIRT7 inhibitor YZL-51N. We initially isolated bioactive YZL-51N from cockroach (Periplaneta americana) extracts and then developed the de novo synthesis of this compound. Further investigation revealed that YZL-51N impaired SIRT7 enzymatic activities through occupation of the NAD+ binding pocket. YZL-51N attenuated DNA damage repair induced by ionizing radiation (IR) in colorectal cancer cells and exhibited a synergistic anticancer effect when used in combination with etoposide. Overall, our study not only identified YZL-51N as a selective SIRT7 inhibitor from insect resources, but also confirmed its potential use in combined chemo-radiotherapy by interfering in the DNA damage repair process.

8.
Water Res ; 261: 122044, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38972237

ABSTRACT

Mercury (Hg) in runoff water poses significant ecological risks to aquatic ecosystems that can affect organisms. However, accurately identifying the sources and transformation processes of Hg in runoff water is challenging due to complex natural conditions. This study provides a comprehensive investigation of Hg dynamics in water from rainfall to runoff. The Hg isotope fractionation in water was characterized, which allows accurate quantification of Hg sources, transport, and transformations in rainfall-runoff processes. Δ200Hg and corrected Δ199Hg values can serve as reliable tracers for identifying Hg sources in the runoff water and the variation of δ202Hg can be explained by Hg transformation processes. During runoff migration processes, Hg from rainfall is rapidly absorbed on the land surface, while terrestrial Hg entering the water by the dissolution process becomes the primary component of dissolved mercury (DHg). Besides the dissolution and adsorption, microbial Hg(II) reduction and demethylation of MeHg were dominant processes for DHg in the runoff water that flows through the rice paddies, while photochemical Hg(II) reduction was the dominant process for DHg in the runoff water with low water exchange rates. Particulate Hg (PHg) in runoff water is dominantly originated by the terrestrial material and derived from the dissolution and adsorption process. Tracking sources and transformations of Hg in runoff water during the rainfall-runoff process provides a basis for studying Hg pollution in larger water bodies under complex environmental factors.

9.
Cancer Res ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900939

ABSTRACT

Analysis of extracellular vesicles (EVs) is a promising noninvasive liquid biopsy approach for breast cancer (BC) detection, prognosis, and therapeutic monitoring. A comprehensive understanding of the characteristics and proteomic composition of BC-specific EVs from human samples is required to realize the potential of this strategy. In this study, we applied a mass spectrometry-based, data-independent acquisition (DIA) proteomic approach to characterize human serum EVs derived from patients with BC (n = 126) and healthy donors (HDs, n = 70) in a discovery cohort and validated the findings in five independent cohorts. Examination of the EV proteomes enabled construction of specific EV protein classifiers for diagnosing BC and distinguishing patients with metastatic disease. Of note, TALDO1 was found to be an EV biomarker of distant metastasis of BC. In vitro and in vivo analysis confirmed the role of TALDO1 in stimulating BC invasion and metastasis. Finally, high-throughput molecular docking and virtual screening of a library consisting of 271,380 small molecules identified a potent TALDO1 allosteric inhibitor, AO-022, which could inhibit BC migration in vitro and tumor progression in vivo. Together, this work elucidates the proteomic alterations in the serum EVs of BC patients to guide development of improved diagnosis, monitoring, and treatment strategies.

10.
Am J Cancer Res ; 14(5): 2523-2537, 2024.
Article in English | MEDLINE | ID: mdl-38859858

ABSTRACT

Chemotherapy is the principal treatment for advanced cancer patients. However, chemotherapeutic resistance, an important hallmark of cancer, is considered as a key impediment to effective therapy in cancer patients. Multiple signaling pathways and factors have been underscored to participate in governing drug resistance. Posttranslational modifications, including ubiquitination, glycosylation, acetylation and phosphorylation, have emerged as key players in modulating drug resistance in gynecological tumors, such as ovarian cancer, cervical cancer and endometrial cancer. In this review article, we summarize the role of ubiquitination in governing drug sensitivity in gynecological cancers. Moreover, we describe the numerous compounds that target ubiquitination in gynecological cancers to reverse chemotherapeutic resistance. In addition, we provide the future perspectives to fully elucidate the mechanisms by which ubiquitination controls drug resistance in gynecological tumors, contributing to restoring drug sensitivity. This review highlights the complex interplay between ubiquitination and drug resistance in gynecological tumors, providing novel insights into potential therapeutic targets and personalized treatment strategies to overcome the bottleneck of drug resistance.

11.
AAPS J ; 26(4): 69, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862807

ABSTRACT

Gefapixant is a weakly basic drug which has been formulated as an immediate release tablet for oral administration. A physiologically based biopharmaceutics model (PBBM) was developed based on gefapixant physicochemical properties and clinical pharmacokinetics to aid formulation selection, bioequivalence safe space assessment and dissolution specification settings. In vitro dissolution profiles of different free base and citrate salt formulations were used as an input to the model. The model was validated against the results of independent studies, which included a bioequivalence and a relative bioavailability study, as well as a human ADME study, all meeting acceptance criteria of prediction errors ≤ 20% for both Cmax and AUC.  PBBM was also applied to evaluate gastric pH-mediated drug-drug-interaction potential with co-administration of a proton pump inhibitor (PPI), omeprazole. Model results showed good agreement with clinical data in which omeprazole lowered gefapixant exposure for the free base formulation but did not significantly alter gefapixant pharmacokinetics for the citrate based commercial drug product. An extended virtual dissolution bioequivalence safe space was established.  Gefapixant drug product batches are anticipated to be bioequivalent with the clinical reference batch when their dissolution is > 80% in 60 minutes. PBBM established a wide dissolution bioequivalence space as part of assuring product quality.


Subject(s)
Models, Biological , Solubility , Therapeutic Equivalency , Humans , Proton Pump Inhibitors/pharmacokinetics , Proton Pump Inhibitors/administration & dosage , Proton Pump Inhibitors/chemistry , Biological Availability , Biopharmaceutics/methods , Drug Liberation , Omeprazole/pharmacokinetics , Omeprazole/administration & dosage , Omeprazole/chemistry , Administration, Oral , Hydrogen-Ion Concentration , Tablets , Drug Interactions , Chemistry, Pharmaceutical/methods , Cross-Over Studies , Drug Compounding/methods
12.
PLoS One ; 19(6): e0303694, 2024.
Article in English | MEDLINE | ID: mdl-38870188

ABSTRACT

OBJECTIVE: This study investigates the association between physical exercise and emotion regulation abilities among college students, introducing self-efficacy as a mediating variable to analyze the pathway mechanism through which physical exercise affects emotion regulation abilities. METHODS: A cross-sectional study design was employed, utilizing a stratified random sampling method to survey three colleges in Jiangsu Province, China. Physical Activity Rating Scale, Physical Activity Self-efficacy Scale, and Emotional Intelligence Scale were used to measure the college student population. Regression analysis and mediation tests assessed whether self-efficacy mediates the relationship between physical exercise and college students' emotion regulation abilities. A total of 5,430 valid questionnaires were collected. RESULTS: The distribution of college students' physical activities was 77.0% for low, 13.1% for medium, and 9.3% for high levels. Physical activities were significantly and positively correlated with self-efficacy and emotional management abilities (r = 0.298,0.105;P<0.01), and self-efficacy was significantly and positively correlated with emotional management abilities (r = 0.322, P<0.01). Situational motivation and subjective support under self-efficacy were 0.08 and 0.255, respectively, and the adjusted R2 was 0.107. Self-efficacy played a fully mediating role between physical activities and emotional management abilities, with a total effect value of 0.032. The values of the direct and indirect effects were 0.003 and 0.029, accounting for 8.95% and 90.74% of the total effect, respectively. CONCLUSION: The physical exercise behavior of college students is primarily characterized by low intensity. Physical exercise among college students can positively predict their ability to regulate emotions. Self-efficacy fully mediates the relationship between physical exercise and emotion regulation ability among college students. College students can indirectly influence their ability to regulate emotions through physical exercise and self-efficacy.


Subject(s)
Affect , Emotional Regulation , Exercise , Self Efficacy , Students , Humans , Exercise/psychology , Exercise/physiology , Male , Female , Young Adult , Emotional Regulation/physiology , Students/psychology , Cross-Sectional Studies , Affect/physiology , Adult , Surveys and Questionnaires , Adolescent , Universities , China , Emotions/physiology
13.
Adv Mater ; : e2403641, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861754

ABSTRACT

The repair and functional reconstruction of bone defects resulting from severe trauma, surgical resection, degenerative disease, and congenital malformation pose significant clinical challenges. Bone tissue engineering (BTE) holds immense potential in treating these severe bone defects, without incurring prevalent complications associated with conventional autologous or allogeneic bone grafts. 3D printing technology enables control over architectural structures at multiple length scales and has been extensively employed to process biomimetic scaffolds for BTE. In contrast to inert and functional bone grafts, next-generation smart scaffolds possess a remarkable ability to mimic the dynamic nature of native extracellular matrix (ECM), thereby facilitating bone repair and regeneration. Additionally, they can generate tailored and controllable therapeutic effects, such as antibacterial or antitumor properties, in response to exogenous and/or endogenous stimuli. This review provides a comprehensive assessment of the progress of 3D-printed smart scaffolds for BTE applications. It begins with an introduction to bone physiology, followed by an overview of 3D printing technologies utilized for smart scaffolds. Notable advances in various stimuli-responsive strategies, therapeutic efficacy, and applications of 3D-printed smart scaffolds are discussed. Finally, the review highlights the existing challenges in the development and clinical implementation of smart scaffolds, as well as emerging technologies in this field.

14.
Int J Biol Macromol ; : 133025, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38852737

ABSTRACT

The Rosa cymosa Tratt, an herbal plant from the Rosaceae family, has historically been valued in China for its medicinal and edible properties. In this study, a novel polysaccharide from R. cymosa fruit, termed PRCP (purified R. cymosa polysaccharide), was isolated using water extraction, decolorization, deproteinization, and ion-exchange chromatography. The structural characteristics of PRCP were investigated using monosaccharide composition analysis, methylation, GPC, FTIR, CD, and NMR spectroscopy. The immunomodulatory effect and potential mechanism of PRCP were evaluated in vitro using a macrophage cell model. Results indicated that PRCP (37.28 kDa) is a highly branched polysaccharide (72.61 %) primarily composed of arabinogalactan, rhamnogalacturonan, and galactoglucan domains with 13 types of glycosidic linkage fragments. Furthermore, PRCP appears to modulate immunomodulatory effects by influencing the phosphorylation of P38 and JNK proteins in the MAPK pathway. Collectively, these findings highlight the potential of PRCP as a promising natural functional food ingredient for immunostimulation.

15.
Article in English | MEDLINE | ID: mdl-38920065

ABSTRACT

BACKGROUND: The occurrence of acute lung injury (ALI) caused by lipopolysaccharide (LPS) is prevalent and perilous among older individuals. Inflammation and oxidative stress are vital factors in the progression of ALI in this population. Dayuan Yin (DYY) is a classic Chinese herbal formula used for treating pulmonary diseases. Therefore,this situation can be well simulated by selecting suitable aged rats and induced by LPS, which is helpful to evaluate the role of DYY. OBJECTIVE: The objective of this study is to assess the therapeutic efficacy of DYY in reducing pulmonary inflammation and oxidative stress injury in aged rats induced by LPS. METHODS: In elderly male Sprague Dawley (SD) rats, the ALI model was induced by injecting LPS into the peritoneal cavity. The therapeutic effect of the DYY group was evaluated after 3 days of oral administration. Lung tissue damage was assessed using hematoxylin-eosin staining and the lung wet/dry (W/D) ratio. Inflammatory reaction in lung tissue was analyzed by counting inflammatory agents, measuring total protein (TP), and examining the concentration of inflammatory components in bronchoalveolar lavage fluid (BALF). Lung oxidative stress was assessed by measuring malondialdehyde (MDA), inducible nitric oxide synthase (iNOS), and superoxide dismutase (SOD) levels in BALF. The impact of DYY on the phosphorylation of PI3K, AKT, and NF-κBp65 protein was analyzed using Western Blot (WB). RESULTS: The administration of DYY exhibited a dose-dependent reduction in the severity of lung injury caused by LPS, leading to a reversal of the LPS-induced lung W/D ratio. Furthermore, DYY treatment resulted in decreased levels of leukocytes, eosinophils, neutrophils, macrophages, lymphocytes, and total protein in BALF. Additionally, DYY significantly inhibited the upregulation of Interleukin -6, Interleukin -10, and Interleukin -1ß (IL-6, IL-10, IL-1ß) as well as Tumor necrosis factor-α(TNF-α) induced by LPS (P<0.01). The lungs experienced oxidative stress due to LPS, leading to the production of MDA and iNOS, as well as a decrease in SOD activity. DYY reduced oxidative stress in the lungs and inhibited the activation of p-PI3K, p-Akt, and p-NF-κBp65, with a greater effect at higher doses. CONCLUSION: In a dose-dependent manner, DYY suppresses the inflammatory response and oxidative stress in the lung tissue of elderly rats, thereby reducing ALI caused by LPS. This effect may be attributed to the inhibition of the PI3K/AKT/NF-κB pathway activation.

16.
Transl Oncol ; 46: 102020, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38843659

ABSTRACT

This study investigated the synergistic potential of an oncolytic herpes simplex virus armed with interleukin 12 (VT1092M) in combination with immune checkpoint inhibitors for enhancing antitumor responses. The potential of this combination treatment to induce systemic antitumor immunity was assessed using bilateral subcutaneous tumor and tumor re-challenge mouse models. The antitumor efficacy of various OV and ICI treatment combinations and the underlying mechanisms were explored through diverse analytical techniques, including flow cytometry and RNA sequencing. Using VT1092M, either alone or in combination with an anti-PD-L1 antibody, significantly reduced the sizes of both the injected and untreated abscopal tumors in a bilateral tumor mouse model. The combination therapy demonstrated superior antitumor efficacy to the other treatment conditions tested, which was accompanied by an increase in T cell numbers and CD8+T cell activation. Results from the survival and tumor re-challenge experiments showed that the combination therapy elicited long-term, tumor-specific immune responses, which were associated with tumor clearance and prolonged survival. Immune cell depletion assays identified CD8+T cells as the crucial mediators of systemic antitumor immunity during combination therapy. In conclusion, the combination of VT1092M and PD-L1 blockade emerged as a potent inducer of antitumor immune responses, surpassing the efficacy of each monotherapy. This synergistic approach holds promise for achieving robust and sustained antitumor immunity, with potential implications for preventing tumor metastasis in patients with cancer.

17.
Mol Nutr Food Res ; 68(12): e2300833, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38850176

ABSTRACT

SCOPE: Alcoholic liver disease (ALD) is a global public health concern. Nobiletin, a polymethoxyflavone abundant in citrus fruits, enhances circadian rhythms and ameliorates diet-induced hepatic steatosis, but its influences on ALD are unknown. This study investigates the role of brain and muscle Arnt-like protein-1 (Bmal1), a key regulator of the circadian clock, in nobiletin-alleviated ALD. METHODS AND RESULTS: This study uses chronic ethanol feeding plus an ethanol binge to establish ALD models in Bmal1flox/flox and Bmal1 liver-specific knockout (Bmal1LKO) mice. Nobiletin mitigates ethanol-induced liver injury (alanine aminotransferase [ALT]), glucose intolerance, hepatic apoptosis, and lipid deposition (triglyceride [TG], total cholesterol [TC]) in Bmal1flox/flox mice. Nobiletin fails to modulated liver injury (ALT, aspartate aminotransferase [AST]), apoptosis, and TG accumulation in Bmal1LKO mice. The expression of lipogenic genes (acetyl-CoA carboxylase alpha [Acaca], fatty acid synthase [Fasn]) and fatty acid oxidative genes (carnitine pamitoyltransferase [Cpt1a], cytochrome P450, family 4, subfamily a, polypeptide 10 [Cyp4a10], and cytochrome P450, family4, subfamily a, polypeptide 14 [Cyp4a14]) is inhibited, and the expression of proapoptotic genes (Bcl2 inteacting mediator of cell death [Bim]) is enhanced by ethanol in Bmal1flox/flox mice. Nobiletin antagonizes the expression of these genes in Bmal1flox/flox mice and not in Bmal1LKO mice. Nobiletin activates protein kinase B (PKB, also known as AKT) phosphorylation, increases the levels of the carbohydrate response element binding protein (ChREBP), ACC1, and FASN, and reduces the level of sterol-regulatory element binding protein 1 (SREBP1) and phosphorylation of ACC1 in a Bmal1-dependent manner. CONCLUSION: Nobiletin alleviates ALD by increasing the expression of genes involved in fatty acid oxidation by increasing AKT phosphorylation and lipogenesis in a Bmal1-dependent manner.


Subject(s)
ARNTL Transcription Factors , Flavones , Lipogenesis , Liver Diseases, Alcoholic , Mice, Knockout , Proto-Oncogene Proteins c-akt , Animals , Flavones/pharmacology , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Liver Diseases, Alcoholic/prevention & control , Liver Diseases, Alcoholic/metabolism , Liver Diseases, Alcoholic/drug therapy , Lipogenesis/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Male , Liver/drug effects , Liver/metabolism , Mice, Inbred C57BL , Mice , Protective Agents/pharmacology , Ethanol , Signal Transduction/drug effects , Apoptosis/drug effects
18.
Chemistry ; 30(37): e202400838, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38874008

ABSTRACT

The hydroxide exchange membrane fuel cells (HEMFCs) are promising but lack of high-performance anode hydrogen oxidation reaction (HOR) electrocatalysts. The platinum group metals (PGMs) have the HOR activity in alkaline medium two to three orders of magnitude lower than those in acid, leading to the high required PGMs amount on anode to achieve high HEMFC performance. The mechanism study demonstrates the hydrogen binding energy of the catalyst determines the alkaline HOR kinetics, and the adsorbed OH and water on the catalyst surface promotes HOR. Iridium (Ir) has a unique advantage for alkaline HOR due to its similar hydrogen binding energy to Pt and enhanced adsorption of OH. However, the HOR activity of Ir/C is still unsatisfied in practical HEMFC applications. Further fine tuning the adsorption of the intermediate on Ir-based catalysts is of great significance to improve their alkaline HOR activity, which can be reasonably realized by structure design and composition regulation. In this concept, we address the current understanding about the alkaline HOR mechanism and summarize recent advances of Ir-based electrocatalysts with enhanced alkaline HOR activity. We also discuss the perspectives and challenges on Ir-based electrocatalysts in the future.

19.
Nano Lett ; 24(27): 8378-8385, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38885205

ABSTRACT

Stacking orders provide a unique way to tune the properties of two-dimensional materials. Recently, ABCB-stacked tetralayer graphene has been predicted to possess atypical elemental ferroelectricity arising from its symmetry breaking but has been experimentally explored very little. Here, we observe pronounced nonlinear optical second-harmonic generation (SHG) in ABCB-stacked tetralayer graphene while absent in both ABAB- and ABCA-stacked allotropes. Our results provide direct evidence of symmetry breaking in ABCB-stacked tetralayer graphene. The remarkable contrast in the SHG spectra of tetralayer graphene allows straightforward identification of ABCB domains from the other two kinds of stacking order and facilitates the characterization of their crystalline orientation. The employed SHG technique serves as a convenient tool for exploring the intriguing physics and novel nonlinear optics in ABCB-stacked graphene, where spontaneous polarization and intrinsically gapped flat bands coexist. Our results establish ABCB-stacked graphene as a unique platform for studying the rare ferroelectricity in noncentrosymmetric elemental structures.

20.
ACS Appl Mater Interfaces ; 16(27): 35815-35824, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38935440

ABSTRACT

Micro thermoelectric devices are expected to further improve the cooling density for the temperature control of electronic devices; nevertheless, the high contact resistivity between metals and semiconductors critically limits their applications, especially in chip cooling with extremely high heat flux. Herein, based on the calculated results, a low specific contact resistivity of ∼10-7 Ω cm2 at the interface is required to guarantee a desirable cooling power density of micro devices. Thus, we developed a generally applicable interfacial modulation strategy via localized surface doping of thermoelectric films, and the feasibility of such a doping approach for both n/p-type (Bi,Sb)2Te3 films was demonstrated, which can effectively increase the surface-majority carrier concentration explained by the charge transfer mechanism. With a proper doping level, ultralow specific contact resistivities at the interfaces are obtained for n-type (6.71 × 10-8 Ω cm2) and p-type (3.70 × 10-7 Ω cm2) (Bi,Sb)2Te3 layers, respectively, which is mainly attributed to the carrier tunneling enhancement with a narrowed interfacial contact barrier width. This work provides an effective scheme to further reduce the internal resistance of micro thermoelectric coolers, which can also be extended as a kind of universal interfacial modification technique for micro semiconductor devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...