Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 341
Filter
1.
Ecotoxicol Environ Saf ; 280: 116540, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38833982

ABSTRACT

The widespread utilization of polyethylene terephthalate (PET) has caused a variety of environmental and health problems. Compared with traditional thermomechanical or chemical PET cycling, the biodegradation of PET may offer a more feasible solution. Though the PETase from Ideonalla sakaiensis (IsPETase) displays interesting PET degrading performance under mild conditions; the relatively low thermal stability of IsPETase limits its practical application. In this study, enzyme-catalysed PET degradation was investigated with the promising IsPETase mutant HotPETase (HP). On this basis, a carbohydrate-binding module from Bacillus anthracis (BaCBM) was fused to the C-terminus of HP to construct the PETase mutant (HLCB) for increased PET degradation. Furthermore, to effectively improve PET accessibility and PET-degrading activity, the truncated outer membrane hybrid protein (FadL) was used to expose PETase and BaCBM on the surface of E. coli (BL21with) to develop regenerable whole-cell biocatalysts (D-HLCB). Results showed that, among the tested small-molecular weight ester compounds (p-nitrophenyl phosphate (pNPP), p-Nitrophenyl acetate (pNPA), 4-Nitrophenyl butyrate (pNPB)), PETase displayed the highest hydrolysing activity against pNPP. HP displayed the highest catalytic activity (1.94 µM(p-NP)/min) at 50 °C and increased longevity at 40 °C. The fused BaCBM could clearly improve the catalytic performance of PETase by increasing the optimal reaction temperature and improving the thermostability. When HLCB was used for PET degradation, the yield of monomeric products (255.7 µM) was ∼25.5 % greater than that obtained after 50 h of HP-catalysed PET degradation. Moreover, the highest yield of monomeric products from the D-HLCB-mediated system reached 1.03 mM. The whole-cell catalyst D-HLCB displayed good reusability and stability and could maintain more than 54.6 % of its initial activity for nine cycles. Finally, molecular docking simulations were utilized to investigate the binding mechanism and the reaction mechanism of HLCB, which may provide theoretical evidence to further increase the PET-degrading activities of PETases through rational design. The proposed strategy and developed variants show potential for achieving complete biodegradation of PET under mild conditions.


Subject(s)
Biodegradation, Environmental , Burkholderiales , Escherichia coli , Polyethylene Terephthalates , Polyethylene Terephthalates/chemistry , Polyethylene Terephthalates/metabolism , Burkholderiales/enzymology , Escherichia coli/genetics , Bacillus anthracis/enzymology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Protein Engineering
2.
Int J Ophthalmol ; 17(4): 638-645, 2024.
Article in English | MEDLINE | ID: mdl-38638263

ABSTRACT

AIM: To investigate the protective effects, antioxidant potential, and anti-inflammatory mechanisms of eicosane on glutamate-induced cell damage and on N-methyl-D-aspartate (NMDA)-induced retinal ganglion cell (RGC) injury in a mouse model of glaucoma. METHODS: The protective effects of eicosane on the rat R28 retinal precursor cell line were assessed using cell counting kit-8 assays and Hoechst-propidium iodide staining. Intracellular reactive oxygen species (ROS) production was measured using the fluorescent probe 2'-7'-dichlorofluorescin diacetate and flow cytometry. The protective role of eicosane on NMDA-induced RGC injury in a mouse glaucoma model was determined by immunostaining of frozen sections of retina. The effects of eicosane on the metabolome of the retina in mice with NMDA-induced RGC damage were evaluated by liquid chromatography-mass spectroscopy (LC-MS) and untargeted metabolomics analyses. RESULTS: Eicosane treatment significantly attenuated glutamate-induced damage to R28 cells in vitro. Eicosane also protected RGCs against NMDA-induced injury in a mouse glaucoma model. Untargeted metabolomics analyses showed that eicosane increased multiple metabolites, including L-arginine and L-carnitine, in the retina. CONCLUSION: Eicosane has protective effects, antioxidant potential, and anti-inflammatory properties in an in vitro model of glutamate-induced cell damage and in an in vivo model of NMDA-induced RGC injury in mouse glaucoma through modulation of L-arginine and/or L-carnitine metabolism.

3.
Macromol Rapid Commun ; : e2400087, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38688322

ABSTRACT

The collapse or folding of an individual polymer chain into a nanoscale particle gives rise to single-chain nanoparticles (SCNPs), which share a soft nature with biological protein particles. The precise control of their properties, including morphology, internal structure, size, and deformability, are a long-standing and challenging pursuit. Herein, a new strategy based on amphiphilic alternating copolymers for producing SCNPs with ultrasmall size and uniform structure is presented. SCNPs are obtained by folding the designed alternating copolymer in N,N-dimethylformamide (DMF) and fixing it through a photocatalyzed cycloaddition reaction of anthracene units. Molecular dynamics simulation confirms the solvophilic outer corona and solvophobic inner core structure of SCNPs. Furthermore, by adjusting the length of PEG units, precise control over the mean size of SCNPs is achieved within the range of 2.8 to 3.9 nm. These findings highlight a new synthetic strategy that enables enhanced control over morphology and internal structure while achieving ultrasmall and uniform size for SCNPs.

4.
Small Methods ; : e2301731, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38426647

ABSTRACT

Ensuring effective and controlled zinc ion transportation is crucial for functionality of the solid electrolyte interphase (SEI) and overall performance in zinc-based battery systems. Herein the first-ever demonstration of incorporate cation-π interactions are provided in the SEI to effectively facilitate uniform zinc ion flux. The artificial SEI design involves the immobilization of 4-amino-p-terphenyl (TPA), a strong amphiphilic cation-π interaction donor, as a monolayer onto a conductive poly(3,4-ethylenedioxythiophene) (PEDOT) matrix, which enable the establishment of a robust network of cation-π interactions. Through a carefully-designed interfacial polymerization process, a high-quality, large-area, robust is achieved, thin polymeric TPA/PEDOT (TP) film for the use of artificial SEI. Consequently, this interphase exhibits exceptional cycling stability with low overpotential and enables high reversibility of Zn plating/stripping. Symmetrical cells with TP/Zn electrodes can be cycled for more than 3200 hours at 1 mA cm-2 and 1 mAh cm-2 . And the asymmetric cells can cycle 3000 cycles stably with a high Coulomb efficiency of 99.78%. Also, under the extreme conditions of lean electrolyte and low N/P ratio, the battery with TP protective layer can still achieve ultra-stable cycle.

5.
Biomol Biomed ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38552230

ABSTRACT

Radiation-induced lung injury (RILI) frequently occurs as a complication following radiotherapy for chest tumors like lung and breast cancers. However, the precise underlying mechanisms of RILI remain unclear. In this study, we generated RILI models in rats treated with a single dose of 20 Gy and examined lung tissues by single-cell RNA sequencing (scRNA-seq) 2 weeks post-radiation. Analysis of lung tissues revealed 18 major cell populations, indicating an increase in cell-cell communication following radiation exposure. Neutrophils, macrophages, and monocytes displayed distinct subpopulations and uncovered potential for pro-inflammatory effects. Additionally, endothelial cells exhibited a highly inflammatory profile and the potential for reactive oxygen species (ROS) production. Furthermore, smooth muscle cells (SMC) showed a high propensity for extracellular matrix (ECM) deposition. Our findings broaden the current understanding of RILI and highlight potential avenues for further investigation and clinical applications.

6.
Phys Chem Chem Phys ; 26(7): 6180-6188, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38300128

ABSTRACT

The application of liquid crystal technology typically relies on the precise control of molecular orientation at a surface or interface. This control can be achieved through a combination of morphological and chemical methods. Consequently, variations in constrained boundary flexibility can result in a diverse range of phase behaviors. In this study, we delve into the self-assembly of liquid crystals within elastic spatial confinement by using the Gay-Berne model with the aid of molecular dynamics simulations. Our findings reveal that a spherical elastic shell promotes a more regular and orderly alignment of liquid crystals compared to a hard shell. Moreover, during the cooling process, the hard-shell confined system undergoes an isotropic-smectic phase transition. In contrast, the phase behavior within the spherical elastic shell closely mirrors the isotropic-nematic-smectic phase transition observed in bulk systems. This indicates that the orientational arrangement of liquid crystals and the deformations induced by a flexible interface engage in a competitive interplay during the self-assembly process. Importantly, we found that phase behavior could be manipulated by altering the flexibility of the confined boundaries. This insight offers a fresh perspective for the design of innovative materials, particularly in the realm of liquid crystal/polymer composites.

7.
ACS Macro Lett ; 13(1): 52-57, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38147539

ABSTRACT

The development of single-component materials with low cytotoxicity and multichannel fluorescence imaging capability is a research hotspot. In the present work, highly electron-deficient pyrazine monomers were covalently connected into a polyurethane backbone using addition polymerization with terminal poly(ethylene glycol) monomethyl ether units containing a high density of electron pairs. Thereby, an amphiphilic polyurethane-pyrazine (PUP) derivative has been synthesized. The polymer displays cluster-induced emission through compact inter- and/or intramolecular noncovalent interactions and extensive through-space electron coupling and delocalization. Molecular rigidity facilitates red-shifted emission. Based on hydrophilic/hydrophobic interactions and excitation dependence emission at low concentrations, PUP has been self-assembled into fluorescent nanoparticles (PUP NPs) without additional surfactant. PUP NPs have been used for cellular multicolor imaging to provide a variety of switchable colors on demand. This work provides a simple molecular design for environmentally sustainable, luminescent materials with excellent photophysical properties, biocompatibility, low cytotoxicity, and color modulation.


Subject(s)
Polyethylene Glycols , Polyurethanes , Polyethylene Glycols/chemistry , Polymers/chemistry , Pyrazines
8.
J Fungi (Basel) ; 9(12)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38132755

ABSTRACT

In this study, we focused on grapevine-endophyte interactions and reprogrammed secondary metabolism in the host plant due to defense against the colonization of endophytes. Thus, the transcriptional responses of tissue cultured grapevine seedlings (Vitis vinifera L. cv.: Cabernet Sauvignon) to two fungal endophytes Epicoccum layuense R2-21 (Epi R2-21) and Alternaria alternata XHYN2 (Alt XHYN2) at three different time points (6 h, 6 d, 15 d) were analyzed. As expected, a total of 5748 and 5817 differentially expressed genes (DEGs) were separately initiated in Epi R2-21 and Alt XHYN2 symbiotic tissue cultured seedlings compared to no endophyte treatment. The up-regulated DEGs at all time points in Epi R2-21- or Alt XHYN2-treated seedlings were mainly enriched in the flavonoid biosynthesis, phenylpropanoid biosynthesis, phenylalanine metabolism, stilbenoid, diarylheptanoid and gingerol biosynthesis, and circadian rhythm-plant pathways. In addition, the up-regulated DEGs at all sampling times in Alt XHYN2-treated tissue cultured seedlings were enriched in the plant-pathogen interaction pathway, but appeared in Epi R2-21 symbiotic seedlings only after 15 d of treatment. The down-regulated DEGs were not enriched in any KEGG pathways after 6 h inoculation for Epi R2-21 and Alt XHYN2 treatments, but were enriched mainly in photosynthesis-antenna proteins and plant hormone signal transduction pathways at other sampling times. At three different time points, a total of 51 DEGs (all up-regulated, 1.33-10.41-fold) were involved in secondary metabolism, and 22 DEGs (all up-regulated, 1.01-8.40-fold) were involved in defense responses in endophytic fungi symbiotic tissue cultured seedlings. The protein-protein interaction (PPI) network demonstrated that genes encoding CHS (VIT_10s0042g00920, VIT_14s0068g00920, and VIT_16s0100g00910) and the VIT_11s0065g00350 gene encoding CYP73A mediated the defense responses, and might induce more defense-associated metabolites. These results illustrated the activation of stress-associated secondary metabolism in the host grapevine during the establishment of fungi-plant endophytism. This work provides avenues for reshaping the qualities and characteristics of wine grapes utilizing specific endophytes and better understanding plant-microbe interactions.

9.
Nat Commun ; 14(1): 7622, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37993457

ABSTRACT

Major groups of jawed vertebrates exhibit contrasting conditions of dermal plates and scales. But the transition between these conditions remains unclear due to rare information on taxa occupying key phylogenetic positions. The 425-million-year-old fish Entelognathus combines an unusual mosaic of characters typically associated with jawed stem gnathostomes or crown gnathostomes. However, only the anterior part of the exoskeleton was previously known for this very crownward member of the gnathostome stem. Here, we report a near-complete post-thoracic exoskeleton of Entelognathus. Strikingly, its scales are large and some are rhomboid, bearing distinctive peg-and-socket articulations; this combination was previously only known in osteichthyans and considered a synapomorphy of that group. The presence in Entelognathus of an anal fin spine, previously only found in some stem chondrichthyans, further illustrates that many characters previously thought to be restricted to specific lineages within the gnathostome crown likely arose before the common ancestor of living jawed vertebrates.


Subject(s)
Fossils , Jaw , Animals , Phylogeny , Jaw/anatomy & histology , Vertebrates , Fishes , Biological Evolution
10.
Clin Lab ; 69(11)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37948476

ABSTRACT

BACKGROUND: Hemophagocytic syndrome, also known as hemophagocytic lymphohistiocytosis (HLH), is a heterogenic syndrome, which leads to an acute, life-threatening inflammatory reaction. We report a case of rapid death due to HLH induced by chronic, active Epstein-Barr virus (EBV) infection. METHODS: Appropriate laboratory tests, abdominal ultrasonography, and cervical lymph node biopsy. RESULTS: Hemoglobin and platelet counts decreased, fasting triglyceride increased to 2.32 mmol/L, ferritin > 1,500 ng/mL, soluble CD25 (interleukin-2 receptor) > 2,400 U/mL, and abdominal ultrasound indicated splenomegaly, meeting the diagnostic criteria of HLH. A biopsy of the left cervical lymph node revealed chronic, active EBV infection. CONCLUSIONS: HLH is likely under-recognized, and mortality remains high, especially in adults; thus, prompt diagnosis and treatment are essential.


Subject(s)
Epstein-Barr Virus Infections , Lymphohistiocytosis, Hemophagocytic , Adult , Humans , Lymphohistiocytosis, Hemophagocytic/diagnosis , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/diagnosis , Herpesvirus 4, Human
11.
Nano Lett ; 23(22): 10538-10544, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37933820

ABSTRACT

Binders are crucial for maintaining the integrity of an electrode, and there is a growing need for integrating multiple desirable properties into the binder for high-energy batteries, yet significant challenges remain. Here, we successfully synthesized a new binder by cross-linking sodium alginate (SA) with MXene materials (Ti3C2Tx). Besides the improved adhesion and mechanical properties, the integrated SA@Ti3C2Tx binder demonstrates much improved electronic conductivity, which enables ruling out the fluffy conductive additive from the electrode component with enhanced volumetric capacity. When SA@Ti3C2Tx is used to fabricate sulfur (S) cathodes, the conductive-additive-free electrode demonstrates extremely high capacity (1422 mAh cm-3/24.5 mAh cm-2) under an S loading of 17.2 mg cm-2 for Li-S batteries. Impressively, the SA@Ti3C2Tx binder shows remarkable feasibility in other battery systems such as Na-S and LiFePO4 batteries. The proposed strategy of constructing a cross-linking conductive binder opens new possibilities for designing high-mass-loading electrodes with high volumetric capacity.

12.
J Chem Phys ; 159(10)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37681699

ABSTRACT

Confined liquid crystals (LCs) exhibit complex and intriguing structures, which are fascinating fundamental problems in soft matter. The helical structure of cylindrical cavities is of great importance in LC studies, particularly for their application in optical devices. In this study, we employ molecular dynamics simulations to explore the behavior of achiral smectic-B LCs confined in narrow cylindrical cavities, where geometric frustration plays an important role. By increasing the cylinder size, LCs exhibit a transition from multi-helical to layered structures. Notably, we observe two stable structures, namely the helical structure and the layered structure, at moderate cylinder size. We also investigate the effects of the arrangement of cylindrical wall particles (hexagonal or square array) and anchoring strength on the LC structure. Our findings reveal that both the hexagonal array and strong anchoring strength promote the formation of helical structures. Our study provides novel insights into the confinement physics of LCs and highlights the potential for achieving helical structures in achiral LCs, which will expand the future applications of LCs.

13.
J Am Chem Soc ; 145(31): 17309-17320, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37525440

ABSTRACT

Organic materials are promising for cation storage in calcium ion batteries (CIBs). However, the high solubility of organic materials in an electrolyte and low electronic conductivity remain the key challenges for high-performance CIBs. Herein, a nitrogen-rich covalent organic framework with multiple carbonyls (TB-COF) is designed as an aqueous anode to address those obstacles. TB-COF demonstrates a high reversible capacity of 253 mAh g-1 at 1.0 A g-1 and long cycle life (0.01% capacity decay per cycle at 5 A g-1 after 3000 cycles). The redox mechanism of Ca2+/H+ co-intercalated in COF and chelating with C═O and C═N active sites is validated. In addition, a novel C═C active site was identified for Ca2+ ion storage. Both computational and empirical results reveal that per TB-COF repetitive unit, up to nine Ca2+ ions are stored after three staggered intercalation steps, involving three distinct Ca2+ ion storage sites. Finally, the evolution process of radical intermediates further elucidates the C═C reaction mechanism.

14.
Soft Matter ; 19(32): 6176-6182, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37551147

ABSTRACT

Highly conductive and stretchable polymer conductors fabricated from conductive fillers and stretchable polymers are urgently needed in flexible electronics, implants, soft robotics, etc. However, polymer conductors encounter the conductivity-stretchability dilemma, in which high-load fillers needed for high conductivity always result in the stiffness of materials. Herein, we propose a new design of highly conductive and stretchable polymer conductors with low-load nanoparticles (NPs). The design is achieved by the self-assembly of surface-modified NPs to efficiently form robust conductive pathways. We employ computer simulations to elucidate the self-assembly of the NPs in the polymer matrices under equilibrium and tensile states. The conductive pathways retain 100% percolation probability even though the loading of the NPs is lowered to ∼2% volume. When the tensile strain reaches 400%, the percolation probability of the ∼2% NP system is still greater than 25%. The theoretical prediction suggests a way for advancing flexible conductive materials.

15.
J Phys Chem B ; 127(21): 4905-4914, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37200472

ABSTRACT

An automatic method is introduced to generate the initial configuration and input file from SMILES for multiscale molecular dynamics (MD) simulation of cross-linked polymer reaction systems. Inputs are a modified version of SMILES of all the components and conditions of coarse-grained (CG) and all-atom (AA) simulations. The overall process comprises the following steps: (1) Modified SMILES inputs of all the components are converted to 3-dimensional coordinates of molecular structures. (2) Molecular structures are mapped to the coarse-grained scale, followed by a CG reaction simulation. (3) CG beads are backmapped to the atomic scale after the CG reaction. (4) An AA productive run is finally performed to analyze volume shrinkage, glass transition, and atomic detail of network structure. The method is applied to two common epoxy resin reactions, that is, the cross-linking process of DGEVA (diglycidyl ether of vanillyl alcohol) and DHAVA (dihydroxyaminopropane of vanillyl alcohol) and that of DGEBA (diglycidyl ether of bisphenol A) and DETA (diethylenetriamine). These components form network structures after the CG cross-linking reaction and are then backmapped to calculate properties in the atomic scale. The result demonstrates that the method can accurately predict volume shrinkage, glass transition, and all-atom structure of cross-linked polymers. The method bridges from SMILES to MD simulation trajectories in an automatic way, which shortens the time of building up cross-linked polymer reaction model and suitable for high-throughput computations.

16.
Plant Dis ; 2023 May 12.
Article in English | MEDLINE | ID: mdl-37172971

ABSTRACT

Panax notoginseng-also known as Tianqi and Sanqi-is one of the most highly valued medicinal perennial herbs in the world (Wang et al. 2016). In August 2021, leaf spot was observed on P. notoginseng leaves in Lincang sanqi base (23º43´10˝N, 100º7´32˝E, 13.33 hm2). Symptoms expanded from water soaked areas on the leaves to form irregular round or oval leaf spots with transparent or grayish-brown centers containing black granular matter, with an incidence of 10 to 20%. To identify the causal agent, ten symptomatic leaves were randomly selected from ten P. notoginseng plants. Symptomatic leaves were cut into small pieces (5 mm2) with asymptomatic tissue margins, disinfected in 75% ethanol for 30s and in 2% sodium hypochlorite for 3 min, and rinsed three times with sterile distilled water. The tissue portions were placed on potato dextrose agar (PDA) plates incubated at 20℃ with a 12 h light/dark photoperiod. Seven pure isolates were obtained with similar colony morphology, dark gray (top view) or taupe (back view) coloration, with flat and villous surfaces. Pycnidia were globose to subglobose, glabrous or with few mycelial outgrowths, dark brown to black, 22.46 to 155.94 (av. 69.57) µm × 18.20 to 130.5 (av. 57.65) µm (n=50) in size. Conidia were ellipsoidal to cylindrical, thinwalled, smooth, hyaline, aseptate, and measured 1.47 to 6.81 (av. 4.29) µm long and 1.01 to 2.97 (av. 1.98) µm thick (n=100). The isolated strains were preliminarily identified as Boeremia sp. based on the morphological characteristics of colonies and conidia. (Aveskamp et al. 2010; Schaffrath et al. 2021). To confirm pathogen identity, the total genomic DNA of two isolates (LYB-2 and LYB-3) was extracted using the T5 Direct PCR kit. The internal transcribed spacer (ITS), 28S large subunit nrRNA gene (LSU), and ß-tubulin (TUB2) gene regions were PCR-amplified using primers ITS1/ITS4, LR0Rf/LR5r, and BT2F/BT4R (Chen et al. 2015), respectively. Sequences have been deposited in GenBank (ON908942-ON908943 for ITS, ON908944-ON908945 for LSU, ON929285-ON929286 for TUB2). BLASTn searches of generated DNA sequences from 2 purified isolates (LYB-2 and LYB-3) against GenBank showed high similarity (>99%) with the sequences of Boeremia linicola. Moreover, a phylogenetic tree was constructed based on the neighbor-joining method in MEGA-X (Kumar et al. 2018) and revealed that the 2 isolates were closest to B. linicola (CBS 116.76). Pathogenicity tests were conducted with the 2 isolates (LYB-2 and LYB-3) as described by Cai et al. (2009) with slight modifications. Each isolate was inoculated with three healthy annual P. notoginseng plants, and each leaf was inoculated with three drops of conidia suspension (106 spores/mL). Three P. notoginseng plants inoculated with sterile water were used as controls. All plants were covered with plastic bags incubated in a greenhouse (20℃, 90%RH, 12 h light/dark photoperiod). Fifteen days post-inoculation, all inoculated leaves showed similar lesions, and the symptoms were identical to those in the field. The pathogen was reisolated from symptomatic leaf spots, and the colony characteristics were identical to the original isolates. Control plants remained healthy, and no fungus was re-isolated. Morphological characteristics, sequence alignment and pathogenicity tests confirmed that B. linicola was the cause of P. notoginseng leaf spot disease. This is the first report of B. linicola causing leaf spot on P. notoginseng in Yunnan, China. The identification of B. linicola as the causal agent of the observed leaf spot on P. notoginseng is critical to the prevention and control of this disease in the future.

17.
Soft Matter ; 19(20): 3570-3579, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37159247

ABSTRACT

The formation and transformation of defects in confined liquid crystals are fascinating fundamental problems in soft matter. Here, we use molecular dynamics (MD) simulations to study ellipsoidal liquid crystals (LCs) confined in a spherical cavity, which significantly affects the orientation and translation of LC molecules near the surface. The liquid-crystal droplet can present the isotropic to smectic-B phase transition through the smectic-A phase, as the number density of the LC molecules increases. We further find the change of LC structure from bipolar to watermelon-striped during the phase transition from smectic-A (SmA) to smectic-B (SmB) phases. Our results reveal the transition from bipolar defects to the inhomogeneous structures with the coexistence of nematic and smectic phases in smectic liquid-crystal droplets. We also study the influence of the sphere size in the range of 10σ0 ≤ Rsphere ≤ 50σ0 on the structural inhomogeneities. It shows a weak dependence on the sphere size. We further focus on how the structures can be affected by the interaction strength εGB-LJ. Interestingly, we find the watermelon-striped structure can be changed into a configuration with four defects at the vertices of a tetrahedron upon increasing the interaction strength. The liquid crystals at a strong interaction strength of εGB-LJ = 10.0ε0 show the two-dimensional nematic phase at the surface. We further present an explanation for the origin of the striped-pattern formation. Our results highlight the potential for using confinement to control these defects and their associated nanostructural heterogeneity.

18.
Nanoscale ; 15(20): 8988-8995, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37144495

ABSTRACT

The design of cellular functions in synthetic systems, inspired by the internal partitioning of living cells, is a constantly growing research field that is paving the way to a large number of new remarkable applications. Several hierarchies of internal compartments like polymersomes, liposomes, and membranes are used to control the transport, release, and chemistry of encapsulated species. However, the experimental characterization and the comprehension of glycolipid mesostructures are far from being fully addressed. Lipid A is indeed a glycolipid and the endotoxic part of Gram-negative bacterial lipopolysaccharide; it is the moiety that is recognized by the eukaryotic receptors giving rise to the modulation of innate immunity. Herein we propose, for the first time, a combined approach based on hybrid Particle-Field (hPF) Molecular Dynamics (MD) simulations and Small Angle X-Ray Scattering (SAXS) experiments to gain a molecular picture of the complex supramolecular structures of lipopolysaccharide (LPS) and lipid A at low hydration levels. The mutual support of data from simulations and experiments allowed the unprecedented discovery of the presence of a nano-compartmentalized phase composed of liposomes of variable size and shape which can be used in synthetic biological applications.


Subject(s)
Lipopolysaccharides , Liposomes , Lipopolysaccharides/chemistry , Lipid A , Scattering, Small Angle , X-Ray Diffraction , Bacteria , Glycolipids
19.
Nano Lett ; 23(9): 3887-3896, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37094227

ABSTRACT

Nafion, as the mostly used proton exchange membrane material in vanadium redox flow batteries (VRFBs), encounters serious vanadium permeation problems due to the large size difference between its anionic nanophase (3-5 nm) and cationic vanadium ions (∼0.6 nm). Bulk hybridization usually suppresses the vanadium permeation at the expense of proton conductivity since conventional additives tend to randomly agglomerate and damage the nanophase continuity from unsuitable sizes and intrinsic incompatibility. Here, we report the ionic-nanophase hybridization strategy of Nafion membranes by using fluorinated block copolymers (FBCs) and polyoxometalates (POMs) as supramolecular patching additives. The cooperative noncovalent interactions among Nafion, interfacial-active FBCs, and POMs can construct a 1 nm-shrunk ionic nanophase with abundant proton transport sites, preserved continuity, and efficient vanadium screeners, which leads to a comprehensive enhancement in proton conductivity, selectivity, and VRFB performance. These results demonstrate the intriguing potential of the supramolecular patching strategy in precisely tuning nanostructured electrolyte membranes for improved performance.

20.
Adv Mater ; 35(24): e2207916, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37119438

ABSTRACT

Self-sensing actuators are critical to artificial robots with biomimetic proprio-/exteroception properties of biological neuromuscular systems. Existing add-on approaches, which physically blend heterogeneous sensor/actuator components, fall short of yielding satisfactory solutions, considering their suboptimal interfaces, poor adhesion, and electronic/mechanical property mismatches. Here, a single homogeneous material platform is reported by creating a silver-polymer framework (SPF), thus realizing the seamless sensing-actuation unification. The SPF-enabled elastomer is highly stretchable (1200%), conductive (0.076 S m-1 ), and strong (0.76 MPa in-strength), where the stretchable polymer matrix synthesis and in situ silver nanoparticles reduction are accomplished simultaneously. Benefiting from the multimodal sensing capability from its architecture itself (mechanical and thermal cues), self-sensing actuation (proprio-deformations and external stimuli perceptions) is achieved for the SPF-based pneumatic actuator, alongside an excellent load-lifting attribute (up to 3700 times its own weight), substantiating its advantage of the unified sensing-actuation feature in a single homogenous material. In view of its human somatosensitive muscular systems imitative functionality, the reported SPF bodes well for use with next-generation functional tissues, including artificial skins, human-machine interfaces, self-sensing robots, and otherwise dynamic materials.


Subject(s)
Coordination Complexes , Metal Nanoparticles , Humans , Polymers , Silver , Elastomers
SELECTION OF CITATIONS
SEARCH DETAIL
...