Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Comput Biol ; 19(10): e1011506, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37782673

ABSTRACT

Studies of the mouse visual system have revealed a variety of visual brain areas that are thought to support a multitude of behavioral capacities, ranging from stimulus-reward associations, to goal-directed navigation, and object-centric discriminations. However, an overall understanding of the mouse's visual cortex, and how it supports a range of behaviors, remains unknown. Here, we take a computational approach to help address these questions, providing a high-fidelity quantitative model of mouse visual cortex and identifying key structural and functional principles underlying that model's success. Structurally, we find that a comparatively shallow network structure with a low-resolution input is optimal for modeling mouse visual cortex. Our main finding is functional-that models trained with task-agnostic, self-supervised objective functions based on the concept of contrastive embeddings are much better matches to mouse cortex, than models trained on supervised objectives or alternative self-supervised methods. This result is very much unlike in primates where prior work showed that the two were roughly equivalent, naturally leading us to ask the question of why these self-supervised objectives are better matches than supervised ones in mouse. To this end, we show that the self-supervised, contrastive objective builds a general-purpose visual representation that enables the system to achieve better transfer on out-of-distribution visual scene understanding and reward-based navigation tasks. Our results suggest that mouse visual cortex is a low-resolution, shallow network that makes best use of the mouse's limited resources to create a light-weight, general-purpose visual system-in contrast to the deep, high-resolution, and more categorization-dominated visual system of primates.


Subject(s)
Learning , Visual Cortex , Animals , Mice , Brain , Brain Mapping , Primates
2.
Behav Res Methods ; 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37656342

ABSTRACT

Head-mounted cameras have been used in developmental psychology research for more than a decade to provide a rich and comprehensive view of what infants see during their everyday experiences. However, variation between these devices has limited the field's ability to compare results across studies and across labs. Further, the video data captured by these cameras to date has been relatively low-resolution, limiting how well machine learning algorithms can operate over these rich video data. Here, we provide a well-tested and easily constructed design for a head-mounted camera assembly-the BabyView-developed in collaboration with Daylight Design, LLC., a professional product design firm. The BabyView collects high-resolution video, accelerometer, and gyroscope data from children approximately 6-30 months of age via a GoPro camera custom mounted on a soft child-safety helmet. The BabyView also captures a large, portrait-oriented vertical field-of-view that encompasses both children's interactions with objects and with their social partners. We detail our protocols for video data management and for handling sensitive data from home environments. We also provide customizable materials for onboarding families with the BabyView. We hope that these materials will encourage the wide adoption of the BabyView, allowing the field to collect high-resolution data that can link children's everyday environments with their learning outcomes.

3.
Adv Neural Inf Process Syst ; 35: 22628-22642, 2022.
Article in English | MEDLINE | ID: mdl-38435074

ABSTRACT

Humans learn from visual inputs at multiple timescales, both rapidly and flexibly acquiring visual knowledge over short periods, and robustly accumulating online learning progress over longer periods. Modeling these powerful learning capabilities is an important problem for computational visual cognitive science, and models that could replicate them would be of substantial utility in real-world computer vision settings. In this work, we establish benchmarks for both real-time and life-long continual visual learning. Our real-time learning benchmark measures a model's ability to match the rapid visual behavior changes of real humans over the course of minutes and hours, given a stream of visual inputs. Our life-long learning benchmark evaluates the performance of models in a purely online learning curriculum obtained directly from child visual experience over the course of years of development. We evaluate a spectrum of recent deep self-supervised visual learning algorithms on both benchmarks, finding that none of them perfectly match human performance, though some algorithms perform substantially better than others. Interestingly, algorithms embodying recent trends in self-supervised learning - including BYOL, SwAV and MAE - are substantially worse on our benchmarks than an earlier generation of self-supervised algorithms such as SimCLR and MoCo-v2. We present analysis indicating that the failure of these newer algorithms is primarily due to their inability to handle the kind of sparse low-diversity datastreams that naturally arise in the real world, and that actively leveraging memory through negative sampling - a mechanism eschewed by these newer algorithms - appears useful for facilitating learning in such low-diversity environments. We also illustrate a complementarity between the short and long timescales in the two benchmarks, showing how requiring a single learning algorithm to be locally context-sensitive enough to match real-time learning changes while stable enough to avoid catastrophic forgetting over the long term induces a trade-off that human-like algorithms may have to straddle. Taken together, our benchmarks establish a quantitative way to directly compare learning between neural networks models and human learners, show how choices in the mechanism by which such algorithms handle sample comparison and memory strongly impact their ability to match human learning abilities, and expose an open problem space for identifying more flexible and robust visual self-supervision algorithms.

4.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Article in English | MEDLINE | ID: mdl-33431673

ABSTRACT

Deep neural networks currently provide the best quantitative models of the response patterns of neurons throughout the primate ventral visual stream. However, such networks have remained implausible as a model of the development of the ventral stream, in part because they are trained with supervised methods requiring many more labels than are accessible to infants during development. Here, we report that recent rapid progress in unsupervised learning has largely closed this gap. We find that neural network models learned with deep unsupervised contrastive embedding methods achieve neural prediction accuracy in multiple ventral visual cortical areas that equals or exceeds that of models derived using today's best supervised methods and that the mapping of these neural network models' hidden layers is neuroanatomically consistent across the ventral stream. Strikingly, we find that these methods produce brain-like representations even when trained solely with real human child developmental data collected from head-mounted cameras, despite the fact that these datasets are noisy and limited. We also find that semisupervised deep contrastive embeddings can leverage small numbers of labeled examples to produce representations with substantially improved error-pattern consistency to human behavior. Taken together, these results illustrate a use of unsupervised learning to provide a quantitative model of a multiarea cortical brain system and present a strong candidate for a biologically plausible computational theory of primate sensory learning.


Subject(s)
Nerve Net/physiology , Neural Networks, Computer , Neurons/physiology , Pattern Recognition, Visual/physiology , Visual Cortex/physiology , Animals , Child , Datasets as Topic , Humans , Macaca/physiology , Nerve Net/anatomy & histology , Unsupervised Machine Learning , Visual Cortex/anatomy & histology
5.
Front Comput Neurosci ; 11: 100, 2017.
Article in English | MEDLINE | ID: mdl-29163117

ABSTRACT

Visual information in the visual cortex is processed in a hierarchical manner. Recent studies show that higher visual areas, such as V2, V3, and V4, respond more vigorously to images with naturalistic higher-order statistics than to images lacking them. This property is a functional signature of higher areas, as it is much weaker or even absent in the primary visual cortex (V1). However, the mechanism underlying this signature remains elusive. We studied this problem using computational models. In several typical hierarchical visual models including the AlexNet, VggNet, and SHMAX, this signature was found to be prominent in higher layers but much weaker in lower layers. By changing both the model structure and experimental settings, we found that the signature strongly correlated with sparse firing of units in higher layers but not with any other factors, including model structure, training algorithm (supervised or unsupervised), receptive field size, and property of training stimuli. The results suggest an important role of sparse neuronal activity underlying this special feature of higher visual areas.

SELECTION OF CITATIONS
SEARCH DETAIL
...