Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 6218, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34711820

ABSTRACT

Cytotoxic chemotherapeutics primarily function through DNA damage-induced tumor cell apoptosis, although the inflammation provoked by these agents can stimulate anti-cancer immune responses. The mechanisms that control these distinct effects and limit immunogenic responses to DNA-damage mediated cell death in vivo are currently unclear. Using a mouse model of BCR-ABL+ B-cell acute lymphoblastic leukemia, we show that chemotherapy-induced anti-cancer immunity is suppressed by the tumor microenvironment through production of the cytokine IL-6. The chemotherapeutic doxorubicin is curative in IL-6-deficient mice through the induction of CD8+ T-cell-mediated anti-cancer responses, while moderately extending lifespan in wild type tumor-bearing mice. We also show that IL-6 suppresses the effectiveness of immune-checkpoint inhibition with anti-PD-L1 blockade. Our results suggest that IL-6 is a key regulator of anti-cancer immune responses induced by genotoxic stress and that its inhibition can switch cancer cell clearance from primarily apoptotic to immunogenic, promoting and maintaining durable anti-tumor immune responses.


Subject(s)
Antineoplastic Agents/administration & dosage , Doxorubicin/administration & dosage , Interleukin-6/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Tumor Microenvironment , Animals , Apoptosis/drug effects , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , DNA Damage/drug effects , Disease Models, Animal , Humans , Interleukin-6/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/physiopathology
2.
PLoS One ; 15(12): e0242426, 2020.
Article in English | MEDLINE | ID: mdl-33284815

ABSTRACT

Cell culture is widely utilized to study the cellular and molecular biology of different neuronal cell populations. Current techniques to study enriched neurons in vitro are primarily limited to embryonic/neonatal animals and induced pluripotent stem cells (iPSCs). Although the use of these cultures is valuable, the accessibility of purified primary adult neuronal cultures would allow for improved assessment of certain neurological diseases and pathways at the cellular level. Using a modified 7-step immunopanning technique to isolate for retinal ganglion cells (RGCs) and amacrine cells (ACs) from adult mouse retinas, we have successfully developed a model of neuronal culture that maintains for at least one week. Isolations of Thy1.2+ cells are enriched for RGCs, with the isolation cell yield being congruent to the theoretical yield of RGCs in a mouse retina. ACs of two different populations (CD15+ and CD57+) can also be isolated. The populations of these three adult neurons in culture are healthy, with neurite outgrowths in some cases greater than 500µm in length. Optimization of culture conditions for RGCs and CD15+ cells revealed that neuronal survival and the likelihood of neurite outgrowth respond inversely to different culture media. Serially diluted concentrations of puromycin decreased cultured adult RGCs in a dose-dependent manner, demonstrating the potential usefulness of these adult neuronal cultures in screening assays. This novel culture system can be used to model in vivo neuronal behaviors. Studies can now be expanded in conjunction with other methodologies to study the neurobiology of function, aging, and diseases.


Subject(s)
Amacrine Cells/physiology , Primary Cell Culture/methods , Retinal Ganglion Cells/physiology , Amacrine Cells/drug effects , Animals , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Dose-Response Relationship, Drug , Female , Inhibitory Concentration 50 , Male , Mice , Neuronal Outgrowth , Puromycin/pharmacology , Retinal Ganglion Cells/drug effects
5.
J Hepatol ; 64(4): 899-907, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26658687

ABSTRACT

BACKGROUND & AIMS: The Hippo pathway controls organ size through a negative regulation of the transcription co-activator Yap1. The overexpression of hyperactive mutant Yap1 or deletion of key components in the Hippo pathway leads to increased organ size in different species. Analysis of interactions of this pathway with other cellular signals corroborating organ size control is limited in part due to the difficulties associated with development of rodent models. METHODS: Here, we develop a new model of reversible induction of the liver size in mice using siRNA-nanoparticles targeting two kinases of the Hippo pathway, namely, mammalian Ste20 family kinases 1 and 2 (Mst1 and Mst2), and an upstream regulator, neurofibromatosis type II (Nf2). RESULTS: The triple siRNAs nanoparticle-induced hepatomegaly in mice phenocopies one observed with Mst1(-/-)Mst2(-/-) liver-specific depletion, as shown by extensive proliferation of hepatocytes and activation of Yap1. The simultaneous co-treatment with a fourth siRNA nanoparticle against Yap1 fully blocked the liver growth. Hippo pathway-induced liver enlargement is associated with p53 activation, evidenced by its accumulation in the nuclei and upregulation of its target genes. Moreover, injections of the triple siRNAs nanoparticle in p53(LSL/LSL) mice shows that livers lacking p53 expression grow faster and exceed the size of livers in p53 wild-type animals, indicating a role of p53 in controlling Yap1-induced liver growth. CONCLUSION: Our data show that siRNA-nanoparticulate manipulation of gene expression can provide the reversible control of organ size in adult animals, which presents a new avenue for the investigation of complex regulatory networks in liver.


Subject(s)
Genomics/methods , Liver/growth & development , Nanoparticles , RNA Interference , Adaptor Proteins, Signal Transducing/physiology , Animals , Cell Cycle Proteins , Gene Expression , Genes, Neurofibromatosis 2 , Hepatocyte Growth Factor/genetics , Hepatomegaly/etiology , Liver/metabolism , Mice , Mice, Inbred C57BL , Organ Size , Phosphoproteins/physiology , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/genetics , Serine-Threonine Kinase 3 , Tumor Suppressor Protein p53/physiology , YAP-Signaling Proteins
6.
Angew Chem Int Ed Engl ; 53(52): 14397-401, 2014 Dec 22.
Article in English | MEDLINE | ID: mdl-25354018

ABSTRACT

A library of dendrimers was synthesized and optimized for targeted small interfering RNA (siRNA) delivery to different cell subpopulations within the liver. Using a combinatorial approach, a library of these nanoparticle-forming materials was produced wherein the free amines on multigenerational poly(amido amine) and poly(propylenimine) dendrimers were substituted with alkyl chains of increasing length, and evaluated for their ability to deliver siRNA to liver cell subpopulations. Interestingly, two lead delivery materials could be formulated in a manner to alter their tissue tropism within the liver-with formulations from the same material capable of preferentially delivering siRNA to 1) endothelial cells, 2) endothelial cells and hepatocytes, or 3) endothelial cells, hepatocytes, and tumor cells in vivo. The ability to broaden or narrow the cellular destination of siRNA within the liver may provide a useful tool to address a range of liver diseases.


Subject(s)
Amines/chemistry , Dendrimers/chemistry , RNA, Small Interfering/metabolism , Cell Line, Tumor , Endothelial Cells/cytology , Endothelial Cells/metabolism , Factor VII/antagonists & inhibitors , Factor VII/genetics , Factor VII/metabolism , HeLa Cells , Humans , Liver/cytology , Nanostructures/chemistry , RNA Interference , Transfection , alpha-Fetoproteins/antagonists & inhibitors , alpha-Fetoproteins/genetics , alpha-Fetoproteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...