Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 131(15): 154101, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37897748

ABSTRACT

The existence of magnitude dependence in earthquake triggering has been reported. Such a correlation is linked to the issue of seismic predictability and it remains under intense debate whether it is physical or is caused by incomplete data due to the missing short-term aftershocks. Working firstly with a synthetic catalog generated by a numerical model that captures most statistical features of earthquakes and then with a high-resolution earthquake catalog for the Amatrice-Norcia (2016) sequence in Italy, where for the latter case we employ the stochastic declustering method to reconstruct the family tree among seismic events and limit our analysis to events above the magnitude of completeness, we found that the hypothesis of magnitude correlation can be rejected.

2.
IEEE Trans Neural Netw Learn Syst ; 34(2): 1058-1065, 2023 Feb.
Article in English | MEDLINE | ID: mdl-34375291

ABSTRACT

This article introduces a neural approximation-based method for solving continuous optimization problems with probabilistic constraints. After reformulating the probabilistic constraints as the quantile function, a sample-based neural network model is used to approximate the quantile function. The statistical guarantees of the neural approximation are discussed by showing the convergence and feasibility analysis. Then, by introducing the neural approximation, a simulated annealing-based algorithm is revised to solve the probabilistic constrained programs. An interval predictor model (IPM) of wind power is investigated to validate the proposed method.

3.
Sci Rep ; 12(1): 20683, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36450895

ABSTRACT

Among the most important questions that await an answer in seismology, perhaps one is whether there is a correlation between the magnitudes of two successive seismic events. The answer to this question is considered of fundamental importance given the potential effect in forecasting models, such as Epidemic Type Aftershock Sequence models. After a meta-analysis of 29 papers, we speculate that given the lack of studies carried out with realistic physical models and given the possible bias due to the lack of events recorded in the experimental seismic catalogs, important improvements are necessary on both fronts to be sure to provide a statistically relevant answer.


Subject(s)
Earthquakes , Epidemics , Records
4.
Entropy (Basel) ; 23(12)2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34945993

ABSTRACT

An Ms7.0 earthquake struck Jiuzhaigou (China) on 8 August 2017. The epicenter was in the eastern margin of the Tibetan Plateau, an area covered by a dense time-varying gravity observation network. Data from seven repeated high-precision hybrid gravity surveys (2014-2017) allowed the microGal-level time-varying gravity signal to be obtained at a resolution better than 75 km using the modified Bayesian gravity adjustment method. The "equivalent source" model inversion method in spherical coordinates was adopted to obtain the near-crust apparent density variations before the earthquake. A major gravity change occurred from the southwest to the northeast of the eastern Tibetan Plateau approximately 2 years before the earthquake, and a substantial gravity gradient zone was consistent with the tectonic trend that gradually appeared within the focal area of the Jiuzhaigou earthquake during 2015-2016. Factors that might cause such regional gravitational changes (e.g., vertical crustal deformation and variations in near-surface water distributions) were studied. The results suggest that gravity effects contributed by these known factors were insufficient to produce gravity changes as big as those observed, which might be related to the process of fluid material redistribution in the crust. Regional change of the gravity field has precursory significance for high-risk earthquake areas and it could be used as a candidate precursor for annual medium-term earthquake prediction.

5.
Sci Adv ; 7(16)2021 Apr.
Article in English | MEDLINE | ID: mdl-33853784

ABSTRACT

Delineation of physical factors that contribute to earthquake triggering is a challenging issue in seismology. We analyze hydrological modulation of seismicity in Taiwan using groundwater level data and GNSS time series. In western Taiwan, the seismicity rate reaches peak levels in February to April and drops to its lowest values in July to September, exhibiting a direct correlation with annual water unloading. The elastic hydrological load cycle may be the primary driving mechanism for the observed synchronized modulation of earthquakes, as also evidenced by deep earthquakes in eastern Taiwan. However, shallow earthquakes in eastern Taiwan (<18 km) are anticorrelated with water unloading, which is not well explained by either hydrological loading, fluid transport, or pore pressure changes and suggests other time-dependent processes. The moderate correlation between stacked monthly trends of large historic earthquakes and present-day seismicity implies a modestly higher seismic hazard during the time of low annual hydrological loading.

6.
Entropy (Basel) ; 22(8)2020 Aug 01.
Article in English | MEDLINE | ID: mdl-33286630

ABSTRACT

In order to clarify ultra-low-frequency (ULF) seismomagnetic phenomena, a sensitive geomagnetic network was installed in Kanto, Japan since 2000. In previous studies, we have verified the correlation between ULF magnetic anomalies and local sizeable earthquakes. In this study, we use Molchan's error diagram to evaluate the potential earthquake precursory information in the magnetic data recorded in Kanto, Japan during 2000-2010. We introduce the probability gain (PG') and the probability difference (D') to quantify the forecasting performance and to explore the optimal prediction parameters for a given ULF magnetic station. The results show that the earthquake predictions based on magnetic anomalies are significantly better than random guesses, indicating the magnetic data contain potential useful precursory information. Further investigations suggest that the prediction performance depends on the choices of the distance (R) and size of the target earthquake events (Es). Optimal R and Es are about (100 km, 108.75) and (180 km, 108.75) for Seikoshi (SKS) station in Izu and Kiyosumi (KYS) station in Boso, respectively.

7.
Nat Commun ; 10(1): 4051, 2019 09 06.
Article in English | MEDLINE | ID: mdl-31492839

ABSTRACT

The majority of earthquakes occur unexpectedly and can trigger subsequent sequences of events that can culminate in more powerful earthquakes. This self-exciting nature of seismicity generates complex clustering of earthquakes in space and time. Therefore, the problem of constraining the magnitude of the largest expected earthquake during a future time interval is of critical importance in mitigating earthquake hazard. We address this problem by developing a methodology to compute the probabilities for such extreme earthquakes to be above certain magnitudes. We combine the Bayesian methods with the extreme value theory and assume that the occurrence of earthquakes can be described by the Epidemic Type Aftershock Sequence process. We analyze in detail the application of this methodology to the 2016 Kumamoto, Japan, earthquake sequence. We are able to estimate retrospectively the probabilities of having large subsequent earthquakes during several stages of the evolution of this sequence.

8.
Article in English | MEDLINE | ID: mdl-24483388

ABSTRACT

We study the stability conditions of a class of branching processes prominent in the analysis and modeling of seismicity. This class includes the epidemic-type aftershock sequence (ETAS) model as a special case, but more generally comprises models in which the magnitude distribution of direct offspring depends on the magnitude of the progenitor, such as the branching aftershock sequence (BASS) model and another recently proposed branching model based on a dynamic scaling hypothesis. These stability conditions are closely related to the concepts of the criticality parameter and the branching ratio. The criticality parameter summarizes the asymptotic behavior of the population after sufficiently many generations, determined by the maximum eigenvalue of the transition equations. The branching ratio is defined by the proportion of triggered events in all the events. Based on the results for the generalized case, we show that the branching ratio of the ETAS model is identical to its criticality parameter because its magnitude density is separable from the full intensity. More generally, however, these two values differ and thus place separate conditions on model stability. As an illustration of the difference and of the importance of the stability conditions, we employ a version of the BASS model, reformulated to ensure the possibility of stationarity. In addition, we analyze the magnitude distributions of successive generations of the BASS model via analytical and numerical methods, and find that the compound density differs substantially from a Gutenberg-Richter distribution, unless the process is essentially subcritical (branching ratio less than 1) or the magnitude dependence between the parent event and the direct offspring is weak.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(4 Pt 2): 047102, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18999569

ABSTRACT

This Brief Report corrects and extends the results of Zhuang and Ogata [Phys. Rev. E 73, 046134 (2006)] on the asymptotic behavior of the largest event in the epidemic-type aftershock-sequence model for earthquake occurrence. We show that, in the special case that the underlying branching process is critical, there exists a previously unnoticed mode of behavior, which occurs when the expected family size grows relatively slowly.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(4 Pt 2): 046134, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16711905

ABSTRACT

The space-time epidemic-type aftershock sequence model is a stochastic branching process in which earthquake activity is classified into background and clustering components and each earthquake triggers other earthquakes independently according to certain rules. This paper gives the probability distributions associated with the largest event in a cluster and their properties for all three cases when the process is subcritical, critical, and supercritical. One of the direct uses of these probability distributions is to evaluate the probability of an earthquake to be a foreshock, and magnitude distributions of foreshocks and nonforeshock earthquakes. To verify these theoretical results, the Japan Meteorological Agency earthquake catalog is analyzed. The proportion of events that have 1 or more larger descendants in total events is found to be as high as about 15%. When the differences between background events and triggered event in the behavior of triggering children are considered, a background event has a probability about 8% to be a foreshock. This probability decreases when the magnitude of the background event increases. These results, obtained from a complicated clustering model, where the characteristics of background events and triggered events are different, are consistent with the results obtained in [Ogata, Geophys. J. Int. 127, 17 (1996)] by using the conventional single-linked cluster declustering method.

SELECTION OF CITATIONS
SEARCH DETAIL
...