Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
2.
Cell Mol Immunol ; 21(4): 332-348, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38228746

ABSTRACT

Remote organ injury, which is a common secondary complication of sterile tissue damage, is a major cause of poor prognosis and is difficult to manage. Here, we report the critical role of tissue-resident macrophages in lung injury after trauma or stroke through the inflammatory response. We found that depleting tissue-resident macrophages rather than disrupting the recruitment of monocyte-derived macrophages attenuated lung injury after trauma or stroke. Our findings revealed that the release of circulating alarmins from sites of distant sterile tissue damage triggered an inflammatory response in lung-resident macrophages by binding to receptor for advanced glycation end products (RAGE) on the membrane, which activated epidermal growth factor receptor (EGFR). Mechanistically, ligand-activated RAGE triggered EGFR activation through an interaction, leading to Rab5-mediated RAGE internalization and EGFR phosphorylation, which subsequently recruited and activated P38; this, in turn, promoted RAGE translation and trafficking to the plasma membrane to increase the cellular response to RAGE ligands, consequently exacerbating inflammation. Our study also showed that the loss of RAGE or EGFR expression by adoptive transfer of macrophages, blocking the function of RAGE with a neutralizing antibody, or pharmacological inhibition of EGFR activation in macrophages could protect against trauma- or stroke-induced remote lung injury. Therefore, our study revealed that targeting the RAGE-EGFR signaling pathway in tissue-resident macrophages is a potential therapeutic approach for treating secondary complications of sterile damage.


Subject(s)
Lung Injury , Stroke , Humans , Macrophages , Macrophages, Alveolar/metabolism , Receptor for Advanced Glycation End Products/metabolism , ErbB Receptors/metabolism , Stroke/metabolism
3.
Discov Med ; 35(179): 1043-1051, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38058069

ABSTRACT

BACKGROUND: Rapamycin (RAP), as a Mammalian Target of Rapamycin (mTOR) inhibitor, has a certain antiepileptic effect. The blood-brain barrier (BBB), neuroinflammation, lymphocyte immune cells, and neuronal apoptosis play an obligatory role in the course of a seizure. The aim of this study is to probe whether the antiepileptic mechanism of RAP involves the blood-brain barrier, neuroinflammation, lymphocytes, and neuronal apoptosis. METHODS: First, we established a rat epilepsy model by injecting lithium chloride and pilocarpine into the rats (intraperitoneal injection). Then the epileptic rats were treated with different doses of RAP (1 mg/kg.d, 2 mg/kg.d, 4 mg/kg.d). Peripheral blood, brain tissue, and temporal lobe tissue were collected. The levels of blood-brain barrier-related proteins and inflammatory cytokines in the peripheral blood of rats were measured by enzyme-linked immunosorbent assay (ELISA). The effect of RAP on T cell subsets in epileptic rats was analyzed by flow cytometry. The apoptosis of neurons and glial cells in the temporal lobe of rats was analyzed by immunohistochemistry. RESULTS: This study found that RAP reduces the levels of BBB-interrelated proteins (matrix metallopeptidase 9 (MMP-9), MMP-2, tissue inhibitor of metalloproteinases 1 (TIMP-1), TIMP-2) and inflammatory cytokines (interleukin-2 (IL-2), interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α)) in epileptic rats compared to the model group (p < 0.05). RAP increases the level of total T cells (CD3+CD45+) and T helper cells (CD3+CD4+), decreases the level of cytotoxic T lymphocytes (CD3+CD8+), and inhibits the apoptosis of neurons and glial cells in the temporal lobe compared to the model group (p < 0.05). CONCLUSIONS: The antiepileptic mechanism of RAP may be to restore BBB dysfunction, reduce the inflammatory response, balance T cell subsets, and inhibit neuronal and glial cell apoptosis in temporal lobe epilepsy lesions.


Subject(s)
Blood-Brain Barrier , Sirolimus , Rats , Animals , Sirolimus/pharmacology , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Neuroinflammatory Diseases , Cytokines/metabolism , T-Lymphocyte Subsets/metabolism , Apoptosis , Mammals/metabolism
4.
Inflamm Res ; 70(2): 193-203, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33474594

ABSTRACT

OBJECTIVE: Intracellular adhesion molecule-1 (ICAM-1), a transmembrane glycoprotein belonging to the immunoglobulin superfamily, plays a critical role in mediating cell-cell interaction and outside-in cell signaling during the immune response. ICAM-1 is expressed on the cell surface of several cell types including endothelial cells, epithelial cells, leucocytes, fibroblasts, and neutrophils. Despite ICAM-1 has been detected on macrophage, little is known about the function and mechanism of macrophage ICAM-1. METHODS: To investigate the role of lipopolysaccharide (LPS) in ICAM-1 regulation, both the protein and cell surface expression of ICAM-1 were measured. The phagocytosis of macrophage was evaluated by flow cytometry and Confocal microscopy. Small interfering RNA and neutralizing antibody of ICAM-1 were used to assess the effect of ICAM-1 on macrophage phagocytosis. TLR4 gene knockout mouse and cytoplasmic and mitochondrial ROS scavenger were used for the regulation of ICAM-1 expression. ROS was determined using flow cytometry. RESULTS: In this study, we reported that macrophage can be stimulated to increase both the protein and cell surface expression of ICAM-1 by LPS. Macrophage ICAM-1 expression was correlated with enhanced macrophage phagocytosis. We found that using ICAM-1 neutralizing antibody or ICAM-1 silencing to attenuate the function or expression of ICAM-1 could decrease LPS-induced macrophage phagocytosis. Furthermore, we found that knocking out of TLR4 led to inhibited cytoplasmic and mitochondrial ROS production, which in turn, attenuated ICAM-1 expression at both the protein and cell surface levels. CONCLUSION: This study demonstrates that the mechanism of ICAM-1-mediated macrophage phagocytosis is depending on TLR4-mediated ROS production and provides significant light on macrophage ICAM-1 in endotoxemia.


Subject(s)
Endotoxemia/immunology , Intercellular Adhesion Molecule-1/immunology , Macrophages/immunology , Phagocytosis/immunology , Toll-Like Receptor 4/immunology , Animals , Endotoxemia/chemically induced , Intercellular Adhesion Molecule-1/genetics , Lipopolysaccharides , Male , Mice, Inbred C57BL , Mice, Knockout , Reactive Oxygen Species/immunology , Superoxide Dismutase/immunology , Toll-Like Receptor 4/genetics
5.
Cell Death Dis ; 9(10): 932, 2018 09 17.
Article in English | MEDLINE | ID: mdl-30224699

ABSTRACT

Parthanatos is a new form of programmed cell death. It has been recognized to be critical in cerebral ischemia-reperfusion injury, and reactive oxygen species (ROS) can induce parthanatos. Recent studies found that propofol, a widely used intravenous anesthetic agent, has an inhibitory effect on ROS and has neuroprotective in many neurological diseases. However, the functional roles and mechanisms of propofol in parthanatos remain unclear. Here, we discovered that the ROS-ER-calcium-mitochondria signal pathway mediated parthanatos and the significance of propofol in parthanatos. Next, we found that ROS overproduction would cause endoplasmic reticulum (ER) calcium release, leading to mitochondria depolarization with the loss of mitochondrial membrane potential. Mitochondria depolarization caused mitochondria to release more ROS, which, in turn, contributed to parthanatos. Also, we found that propofol inhibited parthanatos through impeding ROS overproduction, calcium release from ER, and mitochondrial depolarization in parthanatos. Importantly, our results indicated that propofol protected cerebral ischemia-reperfusion via parthanatos suppression, amelioration of mitochondria, and ER swelling. Our findings provide new insights into the mechanisms of how ER and mitochondria contribute to parthanatos. Furthermore, our studies elucidated that propofol has a vital role in parthanatos prevention in vivo and in vitro, and propofol can be a promising therapeutic approach for nerve injury patients.


Subject(s)
Calcium/metabolism , Cell Death/drug effects , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Propofol/therapeutic use , Reactive Oxygen Species/metabolism , Adenosine Triphosphate/metabolism , Animals , Blotting, Western , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Cell Line , Humans , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Inbred C57BL , Microscopy, Electron, Transmission , Mitochondria/drug effects , Oxidative Stress/drug effects , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Signal Transduction/drug effects
6.
J Cell Physiol ; 233(9): 6975-6983, 2018 09.
Article in English | MEDLINE | ID: mdl-29336487

ABSTRACT

Epithelial growth factor receptor (EGFR), a tyrosine kinase receptor, plays a critical role in lipopolysaccharide (LPS)-induced endotoxemia. Meanwhile, EGFR signaling is regulated by multiple feedback regulators, including mitogen-inducible gene 6 protein (Mig6). However, as an EGFR regulator, the role of Mig6 in endotoxemia is still remained unknown. Here, we reported for the first time that LPS treatment increased the expression of Mig6 and this effect could be inhibited by EGFR inhibitor, PD168393 or erlotinib. Furthermore, knocking down of Mig6 expression led to increased EGFR activation and inflammatory mediators (TNF-α, il-1ß) production in response to LPS treatment. On the other hand, the increased EGFR activation and TNF-α or il-1ß production in LPS treatment could be inhibited by Mig6 overexpression. Besides, in LPS-induced endotoxemia, ERK1/2 and p-38 activation required Mig6. All these results indicated that Mig6 regulates the production of inflammatory mediators (TNF-α, il-1ß) through inhibiting the over activation of EGFR, which in turn inhibit MAPKs signaling (ERK1/2, p-38). These finding suggested that Mig6 may be a novel potential target for controlling the over inflammatory response in endotoxemia.


Subject(s)
Endotoxemia/metabolism , ErbB Receptors/metabolism , Inflammation Mediators/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Animals , Cytokines/biosynthesis , Endotoxemia/genetics , Enzyme Activation , Gene Silencing , Intracellular Signaling Peptides and Proteins/genetics , Lipopolysaccharides , MAP Kinase Signaling System , Macrophages/metabolism , Male , Mice, Inbred C57BL , Models, Biological , Phosphorylation , Up-Regulation/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
7.
Chemosphere ; 68(7): 1218-23, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17349670

ABSTRACT

The migration of uranium(VI) in subsurface environments is strongly influenced by its adsorption/desorption reactions at the solid/solution interface. Phosphate is often present in subsurface systems and was shown to significantly affect U(VI) adsorption in previous batch experiments. In this study, column experiments were conducted to investigate the effects of phosphate on U(VI) adsorption and transport under flow conditions. The adsorption of U(VI) and phosphate was very low on pure quartz sand with negligible effects on U(VI) and phosphate transport. However, U(VI) and phosphate transport was retarded in a column packed with goethite-coated sand. The presence of phosphate, either as a co-solute with U(VI) or pre-adsorbed, greatly increased U(VI) adsorption and retardation. U(VI) and phosphate adsorption in our column experiments were rate-limited, and the adsorption of U(VI) and phosphate was not reversible, with kinetic limitations more pronounced for desorption than for adsorption. This study demonstrated the importance of phosphate in controlling U(VI) mobility in subsurface environments and helped illustrate some phenomena potentially applicable to U(VI) adsorption and transport in natural systems, especially where U(VI) adsorption is rate-limited.


Subject(s)
Iron Compounds/chemistry , Phosphates/chemistry , Uranium/chemistry , Adsorption , Kinetics , Minerals
8.
Environ Sci Technol ; 40(10): 3243-7, 2006 May 15.
Article in English | MEDLINE | ID: mdl-16749688

ABSTRACT

U(VI) adsorption onto goethite-coated sand was studied in batch experiments ata solid-to-solution ratio (SSR) ranging from 33.3 to 333 g/L. Batch kinetic experiments revealed that the presence of 10(-4) M phosphate increased both the initial rate and ultimate extent of U(VI) adsorption compared with phosphate-free systems. Our experimental U(VI) adsorption isotherms were independent of SSR in phosphate-free systems. However, the U(VI) adsorption isotherm became dependent on SSR in phosphate-containing systems (with a lower SSR resulting in stronger U(VI) adsorption). A surface complexation model (SCM) was used to conceptualize the interactions in systems containing U(VI), phosphate, and goethite contributing to this SSR effect. The SCM accounted for the effects of SSR on U(VI) adsorption reasonably well. This study implies that the extrapolation of batch-measured adsorption parameters of U(VI) (and potentially other radionuclides and metal(loid)s as well) to field conditions should be done with caution, especially in the presence of strongly interacting ligands.


Subject(s)
Phosphates/chemistry , Soil Pollutants, Radioactive/analysis , Uranium/chemistry , Water Pollutants, Radioactive/analysis , Adsorption , Kinetics , Ligands , Radioactive Waste , Solubility
9.
Environ Sci Technol ; 39(18): 7102-10, 2005 Sep 15.
Article in English | MEDLINE | ID: mdl-16201635

ABSTRACT

At As-contaminated sites, where the ingestion of soil by children is typically the critical human-health exposure pathway, information on the bioavailability of soil-bound As is often limited. The influence of various soil physical and chemical properties (iron and manganese oxides, pH, cation exchange capacity, total inorganic and organic carbon, and particle size) on As(III) adsorption, sequestration, bioaccessibility (as a surrogate for oral bioavailability), and oxidation was investigated in 36 well-characterized soils by use of a physiologically based extraction test (PBET). These results were compared to an earlier published study with As(V) on the same set of soils. The properties of the soils were able to explain >80% of the variability in the adsorption and sequestration (as measured by the reduction in bioaccessibility over time) of As(III) in these soils. The initial bioaccessibility of As(III) was significantly higher than the initial bioaccessibility of As(V) on the same set of soils. However, over a 6-month period of aerobic aging, a significant portion of the solid-phase As(III) on these soils was oxidized to As(V), decreasing its bioaccessibility markedly. A multivariable linear regression model previously developed to predict the steady-state bioaccessibility of As(V) in soils was able to predict the bioaccessibility in As(III)-spiked soils within a root-mean-square error (RMSE) of 16.8%. Generally, soils having a higher iron oxide content and lower soil pH exhibited lower bioaccessibility. This model was also able to predict the in vivo bioavailability of As in contaminated soils previously used in an independent juvenile swine dosing trial within an RMSE of 15.5%, providing a greatly improved yet conservative estimate of bioavailability relative to the typical default assumption of 100%. However, the model was not able to accurately predict the bioavailability of As in a different set of contaminated soils previously used in an independent Cebus monkey dosing trial, consistently overpredicting the bioavailability, resulting in an RMSE of 42.7%. This model can be used to provide an initial estimate of As bioavailability in soil to aid in screening sites and justifying expensive site-specific animal feeding studies. Further, as the model is based on major soil properties, the resulting estimates are valid as long as the major soil properties do not change, thus providing some confidence in the long-term applicability of the estimates.


Subject(s)
Arsenic/analysis , Oxygen/analysis , Soil Pollutants/analysis , Adsorption , Aging , Biological Availability , Carbon/analysis , Cations , Ferric Compounds/analysis , Ferric Compounds/pharmacology , Hydrogen-Ion Concentration , Iron/analysis , Kinetics , Linear Models , Manganese Compounds/analysis , Models, Statistical , Multivariate Analysis , Oxidation-Reduction , Oxides/analysis , Soil/analysis , Spectrophotometry , Time Factors
10.
Environ Sci Technol ; 38(22): 6059-65, 2004 Nov 15.
Article in English | MEDLINE | ID: mdl-15573607

ABSTRACT

U(VI)-phosphate interactions are important in governing the subsurface mobility of U(VI) in both natural and contaminated environments. We studied U(VI) adsorption on goethite-coated sand (to mimic natural Fe-coated subsurface materials) as a function of pH in systems closed to the atmosphere, in both the presence and the absence of phosphate. Our results indicate that phosphate strongly affects U(VI) adsorption. The effect of phosphate on U(VI) adsorption was dependent on solution pH. At low pH, the adsorption of U(VI) increased in the presence of phosphate, and higher phosphate concentration caused a larger extent of increase in U(VI) adsorption. Phosphate was strongly bound by the goethite surface in the low pH range, and the increased adsorption of U(VI) at low pH was attributed to the formation of ternary surface complexes involving both U(VI) and phosphate. In the high pH range, the adsorption of U(VI) decreased in the presence of phosphate at low total Fe concentration, and higher phosphate concentration caused a larger extent of decrease in U(VI) adsorption. This decrease in U(VI) adsorption was attributed to the formation of soluble uranium-phosphate complexes. A surface complexation model (SCM) was proposed to describe the effect of phosphate on U(VI) adsorption to goethite. This proposed model was based on previous models that predict U(VI) adsorption to iron oxides in the absence of phosphate and previous models developed to predict phosphate adsorption on goethite. A postulated ternary surface complex of the form of (>FePO4UO2) was included in our model to account for the interactions between U(VI) and phosphate. The model we established can successfully predict U(VI) adsorption in the presence of phosphate under a range of conditions (i.e., pH, total phosphate concentration, and total Fe concentration).


Subject(s)
Phosphates/chemistry , Soil Pollutants, Radioactive/analysis , Uranium/chemistry , Adsorption , Hydrogen-Ion Concentration , Iron/chemistry , Models, Chemical , Predictive Value of Tests , Silicon Dioxide/chemistry , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL