Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Bioresour Technol ; 402: 130795, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705213

ABSTRACT

Stable carbon release and coupled microbial efficacy of external carbon source solid fillers are the keys to enhanced nitrogen removal in constructed wetlands. The constructed wetland plant residue Acorus calamus was cross-linked with poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) to create composite solid carbon source fillers (Ac-BDPs). The study demonstrated the slow release of carbon sources from Ac-BDPs with 35.27 mg/g under an average release rate of 0.88 mg/(g·d). Excellent denitrification was also observed in constructed wetlands with Ac-BDPs. Moreover, the average removal rate of nitrate nitrogen (NO3--N) was increased by 1.94 and 3.85 times of the blank groups under initial NO3--N inputs of 5 and 15 mg/L, respectively. Furthermore, the relatively high abundances of nap, narG, nirKS, norB, qnorZ and nosZ guaranteed efficient denitrification performance in constructed wetlands with Ac-BDPs. The study introduced a reliable technique for biological nitrogen removal by using composite carbon source fillers in constructed wetlands.


Subject(s)
Carbon , Nitrogen , Wetlands , Polyesters/chemistry , Polyesters/metabolism , Denitrification , Biodegradation, Environmental , Nitrates , Water Purification/methods , Polyhydroxybutyrates
2.
Chemosphere ; 326: 138480, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36958493

ABSTRACT

The airlift internal circulation reactor for partial nitrification-anammox (PNA-ALR) has the advantages of a small footprint, high mass transfer efficiency, and the ease of formation of granular sludge, thus making it an effective biological treatment for ammonia-containing wastewater. Although superficial gas velocity (SGV) is an essential parameter for PNA-ALR, it is unclear how the magnitude of SGV impacts nitrogen removal performance. In this study, the nitrogen removal efficiencies of five PNA-ALRs with different SGV were measured during feeding with synthetic municipal wastewater. At an optimal SGV of 2.35 cm s-1, the PNA-ALR consistently maintained the total inorganic nitrogen (TIN) removal efficiency at 76.31% and the effluent TIN concentration was less than 10 mg L-1. By increasing or decreasing the SGV, the nitrogen removal efficiency decreased to a range between 30% and 50%. At lower SGV, the dead space in the PNA-ALR was increased by 21.15%, and the feast/famine ratio of sludge increased to greater than 0.5, which caused a disruption in the structure, and a large loss of, granular sludge. Computational fluid dynamics (CFD) simulations showed operation at a higher SGV, resulting in excessive shear stress of 3.25 N m-2 being generated from bubble rupture in the degassing section. Fluorescent staining determined a decrease of 26.5% in viable bacteria. These results have improved our understanding of the effects of SGV on a PNA-ALR during mainstream wastewater treatment.


Subject(s)
Sewage , Wastewater , Anaerobic Ammonia Oxidation , Bioreactors/microbiology , Denitrification , Nitrification , Nitrogen , Oxidation-Reduction , Sewage/microbiology , Waste Disposal, Fluid
3.
Chemosphere ; 307(Pt 1): 135687, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35842050

ABSTRACT

Anaerobic ammonia oxidation (anammox) is an environmental-friendly biological nitrogen removal process, which has been developed as a promising technology in industrial wastewater treatment. However, anammox nitrogen removal under high saline conditions still faces many challenges. This study investigated the performance of anammox sludge under saline short-term shock and the strategy of rapid recovery. Salinity concentration, saline exposure time, and NaCl/Na2SO4 ratio were selected as three critical factors for short-term shock. The activity inhibition of anammox sludge were tested by using response surface methodology (RSM). Our results showed that, compared with the NaCl/Na2SO4 ratio, the salinity concentration and saline exposure time were the significant factor causing the anammox inhibition. The addition of glycine betaine (GB) in moderate amounts (0.1-5 mM) was found to help anammox to resist in relative low saline shock intensities (e.g., IC25 and IC50), with the activity retention rate of 94.7%. However, glycine betaine was not worked effectively under relatively high saline shock intensities (e.g., complete inhibition condition). Microbial community analysis revealed that Brocadiaceae accounted for only about 7.6%-13.2% at inhibited conditions. Interestingly, 16S rRNA analysis showed that the abundance of activated Brocadiaceae remarkably decreased with time after high-level saline shock. This tendency was consistent with the results of qPCR targeted hzsA gene. Finally, based on quorum sensing, the anammox activity was recovered to 93.5% of original sludge by adding 30% original sludge. The study realized the rapid recovery of anammox activity under complete inhibition, promoting the development and operation of salt-tolerant anammox process.


Subject(s)
Bioreactors , Sewage , Anaerobic Ammonia Oxidation , Anaerobiosis , Betaine , Denitrification , Glycine , Nitrogen , Oxidation-Reduction , RNA, Ribosomal, 16S/genetics , Sodium Chloride , Wastewater
4.
Water Res ; 218: 118432, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35472747

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are a group of common recalcitrant pollutant in industrial saline wastewater that raised significant concerns, whereas traditional activated sludge (AS) has limited tolerance to high salinity and PAHs toxicity, restricting its capacity to degrade PAHs. It is therefore urgent to develop a bioaugmented sludge (BS) system to aid in the effective degradation of these types of compounds under saline condition. In this study, a novel bioaugmentation strategy was developed by using halophilic Martelella sp. AD-3 for effectively augmented phenanthrene (PHE) degradation under 3% salinity. It was found that a 0.5∼1.5% (w/w) ratio of strain AD-3 to activated sludge was optimal for achieving high PHE degradation activity of the BS system with degradation rates reaching 2.2 mg⋅gVSS-1⋅h-1, nearly 25 times that of the AS system. Although 1-hydroxy-2-naphthoic acid (1H2N) was accumulated obviously, the mineralization of PHE was more complete in the BS system. Reads-based metagenomic coupled metatranscriptomic analysis revealed that the expression values of ndoB, encoding a dioxygenase associated with PHE ring-cleavage, was 5600-fold higher in the BS system than in the AS system. Metagenome assembly showed the members of the Corynebacterium and Alcaligenes genera were abundant in the strain AD-3 bioaugmented BS system with expression of 10.3±1.8% and 1.9±0.26%, respectively. Moreover, phdI and nahG accused for metabolism of 1H2N have been annotated in both above two genera. Degradation assays of intermediates of PHE confirmed that the activated sludge actually possessed considerable degradation capacity for downstream intermediates of PHE including 1H2N. The degradation capacity ratio of 1H2N to PHE was 87% in BS system, while it was 26% in strain AD-3. These results indicated that strain AD-3 contributed mainly in transforming PHE to 1H2N in BS system, while species in activated sludge utilized 1H2N as substrate to grow, thus establishing a syntrophic interaction with strain AD-3 and achieving the complete mineralization of PHE. Long-term continuous experiment confirmed a stable PHE removal efficiency of 93% and few 1H2N accumulation in BS SBR system. This study demonstrated an effective bioaugmented strategy for the bioremediation of saline wastewater containing PAHs.


Subject(s)
Alphaproteobacteria , Phenanthrenes , Polycyclic Aromatic Hydrocarbons , Alphaproteobacteria/metabolism , Biodegradation, Environmental , Phenanthrenes/metabolism , Sewage , Wastewater/microbiology
5.
Water Res ; 210: 117964, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34959064

ABSTRACT

This study describes an integrated granular sludge and fixed-biofilm (iGB) reactor innovatively designed to carry out the anammox/partial-denitrification (A/PD) process for nitrogen removal with mainstream municipal wastewater. The iGB-A/PD reactor consists of anammox granules inoculated in the lower region of reactor and an acclimated fixed-biofilm positioned in the upper region. Compared to the other reported A/PD systems for mainstream wastewater treatment, this iGB-A/PD reactor is notable due to its higher quality effluent with a total inorganic nitrogen (TIN) of ∼3 mg•L-1 and operation at a high nitrogen removal rate (NRR) of 0.8 ± 0.1 kg-N•m-3•d-1. Reads-based metatranscriptomic analysis found that the expression values of hzsA and hdh, key genes associated with anammox, were much higher than other functional genes on nitrogen conversion, confirming the major roles of the anammox bacteria in nitrogen bio-removal. In both regions of the reactor, the nitrate reduction genes (napA/narG) had expression values of 56-99 RPM, which were similar to that of the nitrite reduction genes (nirS/nirK). The expression reads from genes for dissimilatory nitrate reduction to ammonium (DNRA), nrfA and nirB, were unexpectedly high, and were over the half of the levels of reads from genes required for nitrate reduction. Kinetic assays confirmed that the granules had an anammox activity of 16.2 g-NH4+-N•kg-1-VSS•d-1 and a nitrate reduction activity of 4.1 g-N•kg-1-VSS•d-1. While these values were changed to be 4.9 g- NH4+-N•kg-1-VSS•d-1and 4.3 g-N•kg-1-VSS•d-1 respectively in the fixed-biofilm. Mass flux determination found that PD and DNRA was responsible for ∼50% and ∼25% of nitrate reduction, respectively, in the whole reactor, consistent with high effluent quality and treatment efficiency via a nitrite loop. Metagenomic binning analysis revealed that new and unidentified anammox species, affiliated with Candidatus Brocadia, were the dominant anammox organisms. Myxococcota and Planctomycetota were the principal organisms associated with the PD and DNRA processes, respectively.


Subject(s)
Sewage , Wastewater , Anaerobic Ammonia Oxidation , Biofilms , Bioreactors , Denitrification , Oxidation-Reduction , Planctomycetes
6.
Ann Transl Med ; 9(20): 1592, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34790798

ABSTRACT

BACKGROUND: Heart failure (HF) is a complex clinical syndrome and a serious manifestation or late stage of various heart diseases. This study aimed to explore the protective effects and underlying mechanisms of Shenqi Lixin Decoction (SQLXD) in HF. METHODS: A HF rat model was induced by intraperitoneal injection of adriamycin (3 mg/kg in the first 3 weeks, 2 mg/kg in the next 3 weeks, once a week, subcutaneous injection, 6 weeks cumulative dose is 15 mg/kg). After 4 weeks of intragastric administration of SQLXD (9.975, 19.95, 39.90 g/kg, once a day, gavage), the indexes of cardiac function were measured by cardiac color Doppler ultrasound, the cardiac muscle structure and pathological changes were observed by transmission electron microscope, hematoxylin-eosin (HE) staining and Masson. The plasma N-terminal B-type natriuretic peptide (NT-proBNP) level and myocardial tissue adenosine triphosphate (ATP) content were detected by ELISA. FITC detected the cardiomyocyte apoptosis rate (CMAR) labeled Annexin V/PI. Expression of B cell lymphoma factor 2 (Bcl-2), Bcl-2 associated X (Bax), cysteine protease-3 (Caspase-3), and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA in myocardial tissue were detected by real-time PCR (RT-PCR). The expression of Bcl-2, Bax, Caspase-3 and P53 protein in myocardial tissue were detected by Western blot. RESULTS: Compared to the normal group, left ventricular end systolic diameter (LVSD), left ventricular end diastolic diameter (LVDD), CMAR and the expression of P53 protein, mRNA and protein of Bax and Caspase-3 were significantly increased in model group, while left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), stroke volume (SV) and the expression of Bcl-2 protein, mRNA of PGC-1α and Bcl-2 were significantly reduced. Compared to the model group, LVSD, LVDD, CMAR and the expressions of P53 protein, mRNA and protein of Bax and Caspase-3 in the medium and high dose SQLXD groups and the control group were significantly decreased, while LVEF, LVFS, SV and the expression of Bcl-2 protein, mRNA of PGC-1α and Bcl-2 were obviously increased. Pathological findings by transmission electron microscope, Masson, and HE staining all revealed protective effects of SQLXD on heart. CONCLUSIONS: SQLXD can effectively protect HF rats' hearts. The potential mechanism may be related to the modulation of the expression of PGC-1α and the mitochondrial apoptosis pathway.

7.
Water Res ; 203: 117505, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34384948

ABSTRACT

The denitrification desulfurization process is a promising technology for elemental sulfur (S0) production from sulfide containing wastewater. However, the microbial community associated with high S0 production still is not well studied. This study describes an efficient denitrification S0 production bioreactor based on inoculation with anaerobic granular sludge. At an optimal S/N molar ratio of 7:2, 80 % of the influent sulfide was transformed to high quality elemental sulfur with a purity of 92.5% while the total inorganic nitrogen removal efficiency was stable at ∼80%. Metatranscriptomic analysis found that community expression of the gene encoding the sulfide-quinone reductase (SQR) was 10-fold greater than that of the flavocytochrome-c sulfide dehydrogenase subunit B (fccB). Moreover, the expression level of SQR was also significantly higher than the Dsr gene encoding for dissimilatory sulfate reductase, which encodes a critical S0 oxidation enzyme. Metagenomic binning analysis confirmed that sulfide-oxidizing bacteria (SOB) utilizing SQR were common in the community and most likely accounted for high S0 production. An unexpected enrichment in methanogens and high expression activity of bacteria carrying out Stickland fermentation as well as in other bacteria with reduced genomes indicated a complex community supporting stable sulfide oxidation to S0, likely aiding in performance stability. This study establishes this treatment approach as an alternative biotechnology for sulfide containing wastewater treatment and sheds light on the microbial interactions associated with high S0 production.


Subject(s)
Microbiota , Sewage , Bioreactors , Denitrification , Metagenomics , Nitrates , Oxidation-Reduction , Sulfides
8.
Water Res ; 186: 116321, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32861184

ABSTRACT

Nitrous oxide (N2O) emissions from anammox-based processes are well documented but insight into source of the N2O emission in high-rate anammox granular sludge reactors (AGSR) is limited. In this study, metagenomics and fed-batch experiments were applied to investigate the relative contributions of anammox granules and flocs to N2O production in a high-rate AGSR. Flocs, which constitute only ~10% of total biomass contributed about 60% of the total N2O production. Granules, the main contributor of nitrogen removal (~95%), were responsible for the remaining ~40% of N2O production. This result is inconsistent with reads-based analysis that found the gene encoding clade II type nitrous oxide reductase (nosZII) had similar abundances in both granules and flocs. Another notable trend observed was the relatively higher abundance of the gene for NO-producing nitrite reductase (nir) in comparison to the gene for the nitric oxide reductase gene (nor) in both granules and flocs, indicating nitric oxide (NO) may accumulate in the AGSR. This is significant since NO and N2O pulse assays demonstrated that NO could lead to N2O production from both granules and flocs. However, since anammox bacteria, which were shown to be in higher abundance in granules than in flocs, have the capacity to scavenge NO this provides a mechanism by which its inhibitory effects can be mitigated, limiting N2O release from the granules, consistent with experimental observation. These results demonstrate flocs are the main source of N2O emission in AGSR and provide lab-scale evidence that NO-dependent anammox can mitigate N2O emission.


Subject(s)
Nitrous Oxide , Sewage , Bioreactors , Denitrification , Metagenomics , Nitrogen , Nitrous Oxide/analysis
9.
Sci Total Environ ; 726: 138392, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32334351

ABSTRACT

The aim of this study was to investigate the microbial characteristics and the structural role of exDNA in different size AGSs. Metagenomic results showed that exDNA has a significantly lower GC content, ~46.0%, than the ~65.0% GC of intracellular DNA (inDNA). Taxonomic predictions showed most of the reads from the exDNA that could be taxonomically assigned were from members of the phyla Bacteroidetes (55.0-64.2% of the total exDNA reads). Assigned inDNA reads were mainly from Proteobacteria (50.9-57.8%) or Actinobacteria (18.0-28.0%). Reads mapping showed that exDNA read depths were similar across all predicted open reading frames from assembled genomes that were assigned as Bacteroidetes which is consistent with cell lysis as a source of exDNA. Enrichment of CRISPR-CAS proteins in exDNA reads and CRISPR spacers in Bacteroidetes associated draft genomes suggested that bacteriophage infection may be an important cause of lysis of these cells. A critical role for this exDNA was found using DNase I digestion experiments which showed that the exDNA was vital for the structural stability of relatively small sized AGS but not for the larger sized AGS. The characteristics of exDNA in AGSs revealed in this work provide a new perspective on AGS components and structural stability.


Subject(s)
Bacteriophages , Sewage , Bacteria , Bioreactors , DNA , Metagenome
10.
Environ Int ; 137: 105548, 2020 04.
Article in English | MEDLINE | ID: mdl-32066002

ABSTRACT

Efforts to produce aerobic granular sludge (AGS) for high-efficient and stable nutrient removal in high saline wastewaters have gained much attention recently. This study was undertaken to describe the phase-related characteristics of the rapid formation of glucose-fed salt-tolerant AGS (SAGS) generated from common municipal activated sludge using metagenomic approaches. The time needed for SAGS formation is about 11 days in a multi-ion matrix salinity of 3%. There were three distinct developmental phases during sludge maturation which were designated: I) the salinity adaptation phase (days 1-2), II) the particle-size transition phase (days 3-5) and III) the maturation and steady-state phase (days 6-11), respectively. Genome-based analysis revealed that during the phase I, members of the genus Mangrovibacter, which has the potential to secrete extracellular polymeric substances (EPS), dominated during the formation of initial SAGS aggregates. During phase II, fungi of the class Saccharomycetes, in particular the genus Geotrichum, became dominant and provided a matrix for bacterial attachment. This mutualistic interaction supported the rapid development and maintenance of mature SAGS. This work characterizes a robust approach for the rapid development of SAGS for efficient saline sewage treatment and provides unique insight into the granulation mechanism occurring during the development process.


Subject(s)
Metagenomics , Sewage , Bioreactors , Salinity , Sewage/microbiology , Waste Disposal, Fluid , Wastewater
11.
Water Res ; 169: 115279, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31734392

ABSTRACT

Nitrate production during anammox can decrease total nitrogen removal efficiency, which will negatively impact its usefulness for the removal of nitrogen from waste streams. However, neither the performance characteristics nor physiological shifts associated with nitrate accumulation in anammox reactors under different nitrogen loading rates (NLRs) is well understood. Consequently, these parameters were studied in a lower NLR anammox reactor, termed R1, producing higher than expected levels of nitrate and compared with a higher NLR reactor, termed R2, showing no excess nitrate production. While both reactors showed high NH4+-N removal efficiencies (>90%), the total nitrogen removal efficiency (<60%) was much lower in R1 due to higher nitrate production. Metagenomic analysis found that the number of reads derived from anammox bacteria were significantly higher in R2. Another notable trend in reads occurrence was the relatively higher levels of reads from genes predicted to be nitrite oxidoreductases (nxr) in R1. Binning yielded 27 high quality draft genomes from the two reactors. Analysis of bin occurrence found that R1 showing both a decrease in anammox bacteria and an unexpected increase in nxr. In-situ assays confirmed that R1 had higher rates of nitrite oxidation to nitrate and suggested that it was not solely due to obligate NOB, but other nxr-containing bacteria are important contributors as well. Our results demonstrate that nitrate accumulation can be a serious operational concern for the application of anammox technology to low-strength wastewater treatment and provide insight into the community changes leading to this outcome.


Subject(s)
Microbiota , Nitrogen , Bioreactors , Denitrification , Metagenomics , Oxidation-Reduction
12.
Biodegradation ; 30(5-6): 447-456, 2019 12.
Article in English | MEDLINE | ID: mdl-31342221

ABSTRACT

Aerobic granular sludge (AGS) technology is generally negatively affected by the salinity in high saline organic wastewater. The effect of salinity on organic pollutants removal of AGS was studied in three parallel sequencing batch reactors. The results indicated that the performance of reactors operating at relative low salinity (1%) remained stable. However, at medium salinity (2%) and higher salinity (4%) conditions, the organic pollutants removal efficiencies deteriorated from 93.7 ± 3.0 to 71.6 ± 6.8 and 53.6 ± 5.4%, respectively. The addition of a mixture of acyl-homoserine lactone (AHL) mediated quorum sensing (QS) signaling molecules (0.1 µmol/L of mixed C6-HSL, C8-HSL and 3OC8-HSL) only restored the performance of the 2% salinity reactor back to 86.3 ± 6.2% due to the changing of hydrophobic extracellular polymeric substance ratio from 64 ± 3 to 71 ± 4%. Addition of the AHL had no effect on the pollution removal efficiency at the 4% salinity conditions. Microbial community analysis showed that Dyella (32.3%) species were the dominant member of the community and its occurrence was positively correlated with organic pollutants removal efficiency at relative high salinity (2% and 4%), while Mangrovibacter showed the opposite trend. Higher abundances of hdtS and acylase genes, the synthesis and degradation genes of AHL, were found after adding AHLs to reactors at 2% salinity, which indicated that AHL mediated QS was the primary QS system in salt-tolerant AGS.


Subject(s)
Microbiota , Sewage , Acyl-Butyrolactones , Biodegradation, Environmental , Extracellular Polymeric Substance Matrix , Quorum Sensing , Salt Tolerance
SELECTION OF CITATIONS
SEARCH DETAIL
...