Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Neurotherapeutics ; 21(2): e00320, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38262102

ABSTRACT

Mirror therapy (MT) has been proposed to promote motor recovery post-stroke through activation of mirror neuron system, recruitment of ipsilateral motor pathways, or/and increasing attention toward the affected limb. However, neuroimaging evidence for these mechanisms is still lacking. To uncover the underlying mechanisms, we designed a randomized controlled study and used a voxel-based whole-brain analysis of resting-state fMRI to explore the brain reorganizations induced by MT. Thirty-five stroke patients were randomized to an MT group (n â€‹= â€‹16) and a conventional therapy (CT) group (n â€‹= â€‹19) for a 4-week intervention. Before and after the intervention, the Fugl-Meyer Assessment Upper Limb subscale (FMA-UL) and resting-state fMRI were collected. A healthy cohort (n â€‹= â€‹16) was established for fMRI comparison. The changes in fractional amplitude of low-frequency fluctuation (fALFF) and seed-based functional connectivity were analyzed to investigate the impact of intervention. Results showed that greater FMA-UL improvement in the MT group was associated with the compensatory increase of fALFF in the contralesional precentral gyrus (M1) region and the re-establishment of functional connectivity between the bilateral M1 regions, which facilitate motor signals transmission via the ipsilateral motor pathways from the ipsilesional M1, contralesional M1, to the affected limb. A step-wise linear regression model revealed these two brain reorganization patterns collaboratively contributed to FMA-UL improvement. In conclusion, MT achieved motor rehabilitation primarily by recruitment of the ipsilateral motor pathways. Trial Registration Information: http://www.chictr.org.cn. Unique Identifier. ChiCTR-INR-17013644, submitted on December 2, 2017.


Subject(s)
Stroke Rehabilitation , Stroke , Humans , Magnetic Resonance Imaging/methods , Mirror Movement Therapy , Stroke/diagnostic imaging , Stroke/therapy , Brain/diagnostic imaging , Efferent Pathways , Recovery of Function/physiology
2.
BMC Pulm Med ; 23(1): 509, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38097957

ABSTRACT

BACKGROUND: Mechanical ventilation can cause acute atrophy and injury in the diaphragm, which are related to adverse clinical results. However, the underlying mechanisms of ventilation-induced diaphragm dysfunction (VIDD) have not been well elucidated. The current study aimed to explore the role of cellular senescence in VIDD. METHODS: A total of twelve New Zealand rabbits were randomly divided into 2 groups: (1) spontaneously breathing anaesthetized animals (the CON group) and (2) mechanically ventilated animals (for 48 h) in V-ACV mode (the MV group). Respiratory parameters were collected during ventilation. Diaphragm were collected for further analyses. RESULTS: Compared to those in the CON group, the percentage and density of sarcomere disruption in the MV group were much higher (p < 0.001, both). The mRNA expression of MAFbx and MuRF1 was upregulated in the MV group (p = 0.003 and p = 0.006, respectively). Compared to that in the CON group, the expression of MAFbx and MuRF1 detected by western blotting was also upregulated (p = 0.02 and p = 0.03, respectively). Moreover, RNA-seq showed that genes associated with senescence were remarkably enriched in the MV group. The mRNA expression of related genes was further verified by q-PCR (Pai1: p = 0.009; MMP9: p = 0.008). Transverse cross-sections of diaphragm myofibrils in the MV group showed more intensive positive staining of SA-ßGal than those in the CON group. p53-p21 axis signalling was elevated in the MV group. The mRNA expression of p53 and p21 was significantly upregulated (p = 0.02 and p = 0.05, respectively). The western blot results also showed upregulation of p53 and p21 protein expression (p = 0.03 and p = 0.05, respectively). Moreover, the p21-positive staining in immunofluorescence and immunohistochemistry in the MV group was much more intense than that in the CON group (p < 0.001, both). CONCLUSIONS: In a rabbit model, we demonstrated that mechanical ventilation in A/C mode for 48 h can still significantly induce ultrastructural damage and atrophy of the diaphragm. Moreover, p53-dependent senescence might play a role in mechanical ventilation-induced dysfunction. These findings might provide novel therapeutic targets for VIDD.


Subject(s)
Diaphragm , Respiration, Artificial , Animals , Rabbits , Respiration, Artificial/adverse effects , Respiration, Artificial/methods , Tumor Suppressor Protein p53/genetics , Atrophy , Cellular Senescence , RNA, Messenger
3.
Front Aging Neurosci ; 14: 929923, 2022.
Article in English | MEDLINE | ID: mdl-35847666

ABSTRACT

In addition to typical motor dysfunction, Parkinson's disease is also characterized by respiratory-related dysfunction. As a means of rehabilitation, respiratory muscle strength training (RMST) has been applied to restore Parkinson's disease (PD) functions. However, the current clinical value of RMST in the application for PD has not been widely established. This article aims to review the research progress of the application of RMST in PD rehabilitation to provide new sight into respiratory-related impairments management in people with PD.

4.
Neural Plast ; 2021: 7266263, 2021.
Article in English | MEDLINE | ID: mdl-34630560

ABSTRACT

Bimanual cooperation plays a vital role in functions of the upper extremity and daily activities. Based on the principle of bilateral movement, mirror therapy could provide bimanual cooperation training. However, conventional mirror therapy could not achieve the isolation of the mirror. A novel paradigm mirror therapy called associated mirror therapy (AMT) was proposed to achieve bimanual cooperation task-based mirror visual feedback isolating from the mirror. The study was aimed at exploring the feasibility and effectiveness of AMT on stroke patients. We conducted a single-blind, randomized controlled trial. Thirty-six eligible patients were equally assigned into the experimental group (EG) receiving AMT and the control group (CG) receiving bimanual training without mirroring for five days/week, lasting four weeks. The Fugl-Meyer Assessment Upper Limb subscale (FMA-UL) for upper extremity motor impairment was used as the primary outcome. The secondary outcomes were the Box and Block Test (BBT) and Functional Independence Measure (FIM) for motor and daily function. All patients participated in trials throughout without adverse events or side effects. The scores of FMA-UL and FIM improved significantly in both groups following the intervention. Compared to CG, the scores of FMA-UL and FIM were improved more significantly in EG after the intervention. The BBT scores were improved significantly for EG following the intervention, but no differences were found in the BBT scores of CG after the intervention. However, no differences in BBT scores were observed between the two groups. In summary, our study suggested that AMT was a feasible and practical approach to enhance the motor recovery of paretic arms and daily function in stroke patients. Furthermore, AMT may improve manual dexterity for poststroke rehabilitation.


Subject(s)
Activities of Daily Living , Mirror Movement Therapy/methods , Recovery of Function/physiology , Stroke Rehabilitation/methods , Stroke/therapy , Upper Extremity/physiology , Adult , Aged , Female , Humans , Male , Middle Aged , Single-Blind Method , Stroke/physiopathology , Treatment Outcome
5.
Front Bioeng Biotechnol ; 8: 553270, 2020.
Article in English | MEDLINE | ID: mdl-33195118

ABSTRACT

As one determinant of the efficacy of mirror visual feedback (MVF) in neurorehabilitation, the embodiment perception needs to be sustainable and enhanced. This study explored integrating vibrotactile stimulation into MVF to promote the embodiment perception and provide evidence of the potential mechanism of MVF. In the experiment, the participants were instructed to keep their dominant hand still (static side), while open and close their non-dominant hand (active side) and concentrate on the image of the hand movement in the mirror. They were asked to tap the pedal with the foot of the active side once the embodiment perception is generated. A vibrotactile stimulator was attached on the hand of the active side, and three conditions were investigated: no vibration (NV), continuous vibration (CV), and intermittent vibration (IV). The effects were analyzed on both objective data, including latency time (LT) and electroencephalogram (EEG) signals, and subjective data, including embodiment questionnaire (EQ). Results of LT and EQ suggested a stronger subjective sense of embodiment under the condition of CV and IV, comparing with NV. No significant difference was found between CV and IV. EEG analysis showed that in the hemisphere of the static side, the desynchronization of CV and IV around the central-frontal region (C3 and F3) in the alpha band (8-13 Hz) was significantly prominent compared to NV, and in the hemisphere of the active side, the desynchronization of three conditions was similar. The network analysis of EEG data indicated that there was no significant difference in the efficiency of neural communication under the three conditions. These results demonstrated that MVF combined with vibrotactile stimulation could strengthen the embodiment perception with increases in motor cortical activation, which indicated an evidence-based protocol of MVF to facilitate the recovery of patients with stroke.

6.
ACS Appl Mater Interfaces ; 11(36): 33022-33032, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-31424188

ABSTRACT

Electrode materials that act through the electrochemical conversion mechanism, such as metal selenides, have been considered as promising anode candidates for lithium-ion batteries (LIBs), although their fast capacity attenuation and inadequate electrical conductivity are impeding their practical application. In this work, these issues are addressed through the efficient fabrication of MnSe nanoparticles inside porous carbon hierarchical architectures for evaluation as anode materials for LIBs. Density functional theory simulations indicate that there is a completely irreversible phase transformation during the initial cycle, and the high structural reversibility of ß-MnSe provides a low energy barrier for the diffusion of lithium ions. Electron localization function calculations demonstrate that the phase transformation leads to high charge transfer kinetics and a favorable lithium ion diffusion coefficient. Benefitting from the phase transformation and unique structural engineering, the MnSe/C chestnut-like structures with boosted conductivity deliver enhanced lithium storage performance (885 mA h g-1 at a current density of 0.2 A g-1 after 200 cycles), superior cycling stability (a capacity of 880 mA h g-1 at 1 A g-1 after 1000 cycles), and outstanding rate performance (416 mA h g-1 at 2 A g-1).

SELECTION OF CITATIONS
SEARCH DETAIL
...